91 resultados para Surface wave antennas


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lamb wave type guided wave propagation in foam core sandwich structures and detectability of damages using spectral analysis method are reported in this paper. An experimental study supported by theoretical evaluation of the guided wave characteristics is presented here that shows the applicability of Lamb wave type guided ultrasonic wave for detection of damage in foam core sandwich structures. Sandwich beam specimens were fabricated with 10 mm thick foam core and 0.3 mm thick aluminum face sheets. Thin piezoelectric patch actuators and sensors are used to excite and sense guided wave. Group velocity dispersion curves and frequency response of sensed signal are obtained experimentally. The nature of damping present in the sandwich panel is monitored by measuring the sensor signal amplitude at various different distances measured from the center of the linear phased array. Delaminations of increasing width are created and detected experimentally by pitch-catch interrogation with guided waves and wavelet transform of the sensed signal. Signal amplitudes are analyzed for various different sizes of damages to differentiate the damage size/severity. A sandwich panel is also fabricated with a planer dimension of 600 mm x 400 mm. Release film delamination is introduced during fabrication. Non-contact Laser Doppler Vibrometer (LDV) is used to scan the panel while exciting with a surface bonded piezoelectric actuator. Presence of damage is confirmed by the reflected wave fringe pattern obtained from the LDV scan. With this approach it is possible to locate and monitor the damages by tracking the wave packets scattered from the damages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composite T-joints are commonly used in modern composite airframe, pressure vessels and piping structures, mainly to increase the bending strength of the joint and prevents buckling of plates and shells, and in multi-cell thin-walled structures. Here we report a detailed study on the propagation of guided ultrasonic wave modes in a composite T-joint and their interactions with delamination in the co-cured co-bonded flange. A well designed guiding path is employed wherein the waves undergo a two step mode conversion process, one is due to the web and joint filler on the back face of the flange and the other is due to the delamination edges close to underneath the accessible surface of the flange. A 3D Laser Doppler Vibrometer is used to obtain the three components of surface displacements/velocities of the accessible face of the flange of the T-joint. The waves are launched by a piezo ceramic wafer bonded on to the back surface of the flange. What is novel in the proposed method is that the location of any change in material/geometric properties can be traced by computing a frequency domain power flow along a scan line. The scan line can be chosen over a grid either during scan or during post-processing of the scan data off-line. The proposed technique eliminates the necessity of baseline data and disassembly of structure for structural interrogation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the first observation and analytical model of deformation and spreading of droplets on a vibrating surface under the influence of an ultrasonic standing pressure field. The standing wave allows the droplet to spread, and the spreading rate varies inversely with viscosity. In low viscosity droplets, the synergistic effect of radial acoustic force and the transducer surface acceleration also leads to capillary waves. These unstable capillary modes grow to cause ultimate disintegration into daughter droplets. We find that using nanosuspensions, spreading and disintegration can be prevented by suppressing the development of capillary modes and subsequent break-up. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4757567]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of high enthalpy shock wave on graphitic carbon nanoparticle (GCNP) films has been investigated and discussed in view of space and chemical engineering applications. The GCNP films were developed by using spray method and exposed to high enthalpy shock wave under an inert atmosphere. Upon shock wave treatment, two typical amendments such as weight loss in the deposited material and growth of second order nanostructures (SONS) have been observed. While increasing test gas pressure, the loss of material and density of SONs are gradually increased. Most of the shock wave induced SONS are highly crystalline and belong to the cubic diamond structure. Upon shock treatment as well as with increase of test gas pressure, a considerable improvement in the quality of GCNP films has been observed. Further, ablation of GCNPs exclusively on the top surface of the coatings and formation of hierarchical NPs (diamond NPs on GCNPs) has been observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present in this paper, approximate analytical expressions for the intensity of light scattered by a rough surface, whose elevation. xi(x,y) in the z-direction is a zero mean stationary Gaussian random variable. With (x,y) and (x',y') being two points on the surface, we have h. = 0 with a correlation, = sigma(2)g(r), where r = (x - x')(2) + ( y - y')(2)](1/2) is the distance between these two points. We consider g(r) = exp-r/l)(beta)] with 1 <= beta <= 2, showing that g(0) = 1 and g(r) -> 0 for r >> l. The intensity expression is sought to be expressed as f(v(xy)) = {1 + (c/2y)v(x)(2) + v(y)(2)]}(-y), where v(x) and v(y) are the wave vectors of scattering, as defined by the Beckmann notation. In the paper, we present expressions for c and y, in terms of sigma, l, and beta. The closed form expressions are verified to be true, for the cases beta = 1 and beta = 2, for which exact expressions are known. For other cases, i.e., beta not equal 1, 2 we present approximate expressions for the scattered intensity, in the range, v(xy) = (v(x)(2) + v(y)(2))(1/2) <= 6.0 and show that the relation for f(v(xy)), given above, expresses the scattered intensity quite accurately, thus providing a simple computational methods in situations of practical importance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A droplet residing on a vibrating surface and in the pressure antinode of an asymmetric standing wave can spread radially outward and atomize. In this work, proper orthogonal decomposition through high speed imaging is shown to predict the likelihood of atomization for various viscous fluids based on prior information in the droplet spreading phase. Capillary instabilities are seen to affect ligament rupture. Viscous dissipation plays an important role in determining the wavelength of the most unstable mode during the inception phase of the ligaments. However, the highest ligament capillary number achieved was less than 1, and the influence of viscosity in the ligament growth and breakup phases is quite minimal. It is inferred from the data that the growth of a typical ligament is governed by a balance between the inertial force obtained from the inception phase and capillary forces. By including the effect of acoustic pressure field around the droplet, the dynamics of the ligament growth phase is revealed and the ligament growth profiles for different fluids are shown to collapse on a straight line using a new characteristic time scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid diagnostics and virtual imaging of damages in complex structures like folded plate can help reduce the inspection time for guided wave based NDE and integrated SHM. Folded plate or box structure is one of the major structural components for increasing the structural strength. Damage in the folded plate, mostly in the form of surface breaking cracks in the inaccessible zone is a usual problem in aerospace structures. One side of the folded plate is attached (either riveted or bonded) to adjacent structure which is not accessible for immediate inspection. The sensor-actuator network in the form of a circular array is placed on the accessible side of the folded plate. In the present work, a circular array is employed for scanning the entire folded plate type structure for damage diagnosis and wave field visualization of entire structural panel. The method employs guided wave with relatively low frequency bandwidth of 100-300 kHz. Change in the response signal with respect to a baseline signal is used to construct a quantitative relationship with damage size parameters. Detecting damage in the folded plate by using this technique has significant potential for off-line and on-line SHM technologies. By employing this technique, surface breaking cracks on inaccessible face of the folded plate are detected without disassembly of structure in a realistic environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stiffener is one of the major components of aircraft structures to increase the load carrying capacity. Damage in the stiffener, mostly in the form of crack is an unavoidable problem in aerospace structures. Stiffener is bonded to the inner side of the aircraft panel which is not accessible for immediate inspection. A sensor-actuator network can be placed on the outer side of the panel that is accessible. Ultrasonic lamb waves are transmitted through stiffener using the sensoractuator network for detecting the presence of damages. The sensor-actuator network is placed on both halves of the stiffened section on the accessible surface of the plate. Detecting damage in stiffener by using this technique has significant potential for SHM technology. One of the major objectives of the present work is to determine the smallest detectable crack on the stiffener using the proposed technique. Wavelet based damage parameter correlation studies are carried out. In the proposed scheme, with increase in the damage size along the stiffener, it is found that the amplitude of the received signal decreases monotonically. The advantage of this technique is that the stiffened panels need not be disassembled in a realistic deployment of SHM system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composite T-joints are commonly used in modern composite airframe, pressure vessels and piping structures, mainly to increase the bending strength of the joint and prevents buckling of plates and shells, and in multi-cell thin-walled structures. Here we report a detailed study on the propagation of guided ultrasonic wave modes in a composite T-joint and their interactions with delamination in the co-cured co-bonded flange. A well designed guiding path is employed wherein the waves undergo a two step mode conversion process, one is due to the web and joint filler on the back face of the flange and the other is due to the delamination edges close to underneath the accessible surface of the flange. A 3D Laser Doppler Vibrometer is used to obtain the three components of surface displacements/velocities of the accessible face of the flange of the T-joint. The waves are launched by a piezo ceramic wafer bonded on to the back surface of the flange. What is novel in the proposed method is that the location of any change in material/geometric properties can be traced by computing a frequency domain power flow along a scan line. The scan line can be chosen over a grid either during scan or during post-processing of the scan data off-line. The proposed technique eliminates the necessity of baseline data and disassembly of structure for structural interrogation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of detonations and their interactions is vital for the understanding of the high-speed flow physics involved and the ultimate goal of controlling their detrimental effects. However, producing safe and repeatable detonations within the laboratory can be quite challenging, leading to the use of computational studies which ultimately require experimental data for their validation. The objective of this study is to examine the induced flow field from the interaction of a shock front and accompanying products of combustion, produced from the detonation taking place within a non-electrical tube lined with explosive material, with porous plates with varying porosities, 0.7-9.7%. State of the art high-speed schlieren photography alongside high-resolution pressure measurements is used to visualise the induced flow field and examine the attenuation effects which occur at different porosities. The detonation tube is placed at different distances from the plates' surface, 0-30 mm, and the pressure at the rear of the plate is recorded and compared. The results indicate that depending on the level of porosity and the Mach number of the precursor shock front secondary reflected and transmitted shock waves are formed through the coalescence of compression waves. With reduced porosity, the plates act almost as a solid surface, therefore the shock propagates faster along its surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a newly developed wavelet spectral finite element (WFSE) model to analyze wave propagation in anisotropic composite laminate with a transverse surface crack penetrating part-through the thickness. The WSFE formulation of the composite laminate, which is based on the first-order shear deformation theory, produces accurate and computationally efficient results for high frequency wave motion. Transverse crack is modeled in wavenumber-frequency domain by introducing bending flexibility of the plate along crack edge. Results for tone burst and impulse excitations show excellent agreement with conventional finite element analysis in Abaqus (R). Problems with multiple cracks are modeled by assembling a number of spectral elements with cracks in frequency-wavenumber domain. Results show partial reflection of the excited wave due to crack at time instances consistent with crack locations. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the effects of extended and localized potentials and a magnetic field on the Dirac electrons residing at the surface of a three-dimensional topological insulator like Bi2Se3. We use a lattice model to numerically study the various states; we show how the potentials can be chosen in a way which effectively avoids the problem of fermion doubling on a lattice. We show that extended potentials of different shapes can give rise to states which propagate freely along the potential but decay exponentially away from it. For an infinitely long potential barrier, the dispersion and spin structure of these states are unusual and these can be varied continuously by changing the barrier strength. In the presence of a magnetic field applied perpendicular to the surface, these states become separated from the gapless surface states by a gap, thereby giving rise to a quasi-one-dimensional system. Similarly, a magnetic field along with a localized potential can give rise to exponentially localized states which are separated from the surface states by a gap and thereby form a zero-dimensional system. Finally, we show that a long barrier and an impurity potential can produce bound states which are localized at the impurity, and an ``L''-shaped potential can have both bound states at the corner of the L and extended states which travel along the arms of the potential. Our work opens the way to constructing wave guides for Dirac electrons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seismic site characterization is the basic requirement for seismic microzonation and site response studies of an area. Site characterization helps to gauge the average dynamic properties of soil deposits and thus helps to evaluate the surface level response. This paper presents a seismic site characterization of Agartala city, the capital of Tripura state, in the northeast of India. Seismically, Agartala city is situated in the Bengal Basin zone which is classified as a highly active seismic zone, assigned by Indian seismic code BIS-1893, Indian Standard Criteria for Earthquake Resistant Design of Structures, Part-1 General Provisions and Buildings. According to the Bureau of Indian Standards, New Delhi (2002), it is the highest seismic level (zone-V) in the country. The city is very close to the Sylhet fault (Bangladesh) where two major earthquakes (M (w) > 7) have occurred in the past and affected severely this city and the whole of northeast India. In order to perform site response evaluation, a series of geophysical tests at 27 locations were conducted using the multichannel analysis of surface waves (MASW) technique, which is an advanced method for obtaining shear wave velocity (V (s)) profiles from in situ measurements. Similarly, standard penetration test (SPT-N) bore log data sets have been obtained from the Urban Development Department, Govt. of Tripura. In the collected data sets, out of 50 bore logs, 27 were selected which are close to the MASW test locations and used for further study. Both the data sets (V (s) profiles with depth and SPT-N bore log profiles) have been used to calculate the average shear wave velocity (V (s)30) and average SPT-N values for the upper 30 m depth of the subsurface soil profiles. These were used for site classification of the study area recommended by the National Earthquake Hazard Reduction Program (NEHRP) manual. The average V (s)30 and SPT-N classified the study area as seismic site class D and E categories, indicating that the city is susceptible to site effects and liquefaction. Further, the different data set combinations between V (s) and SPT-N (corrected and uncorrected) values have been used to develop site-specific correlation equations by statistical regression, as `V (s)' is a function of SPT-N value (corrected and uncorrected), considered with or without depth. However, after considering the data set pairs, a probabilistic approach has also been presented to develop a correlation using a quantile-quantile (Q-Q) plot. A comparison has also been made with the well known published correlations (for all soils) available in the literature. The present correlations closely agree with the other equations, but, comparatively, the correlation of shear wave velocity with the variation of depth and uncorrected SPT-N values provides a more suitable predicting model. Also the Q-Q plot agrees with all the other equations. In the absence of in situ measurements, the present correlations could be used to measure V (s) profiles of the study area for site response studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An exact single-product factorisation of the molecular wave function for the timedependent Schrodinger equation is investigated by using an ansatz involving a phasefactor. By using the Frenkel variational method, we obtain the Schrodinger equations for the electronic and nuclear wave functions. The concept of a potential energy surface (PES) is retained by introducing a modified Hamiltonian as suggested earlier by Cederbaum. The parameter in the phase factor is chosen such that the equations of motion retain the physically appealing Born- Oppenheimer-like form, and is therefore unique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the current state of the art, it remains an open problem to detect damage with partial ultrasonic scan data and with measurements at coarser spatial scale when the location of damage is not known. In the present paper, a recent development of finite element based model reduction scheme in frequency domain that employs master degrees of freedom covering the surface scan region of interests is reported in context of non-contact ultrasonic guided wave based inspection. The surface scan region of interest is grouped into master and slave degrees of freedom. A finite element wise damage factor is derived which represents damage state over distributed areas or sharp condition of inter-element boundaries (for crack). Laser Doppler Vibrometer (LDV) scan data obtained from plate type structure with inaccessible surface line crack are considered along with the developed reduced order damage model to analyze the extent of scan data dimensional reduction. The proposed technique has useful application in problems where non-contact monitoring of complex structural parts are extremely important and at the same time LDV scan has to be done on accessible surfaces only.