179 resultados para Stochastic Integral
Resumo:
The method proposed here considers the mean flow in the transition zone as a linear combination of the laminar and turbulent boundary layer in proportions determined by the transitional intermittency, the component flows being calculated by approximate integral methods. The intermittency distribution adopted takes into account the possibility of subtransitions within the zone in the presence of strong pressure gradients. A new nondimensional spot formation rate, whose value depends on the pressure gradient, is utilized to estimate the extent of the transition zone. Onset location is determined by a correlation that takes into account freestream turbulence and facility-specific residual disturbances in test data. Extensive comparisons with available experimental results in strong pressure gradients show that the proposed method performs at least as well as differential models, in many cases better, and is always faster.
Resumo:
We study stochastic games with countable state space, compact action spaces, and limiting average payoff. ForN-person games, the existence of an equilibrium in stationary strategies is established under a certain Liapunov stability condition. For two-person zero-sum games, the existence of a value and optimal strategies for both players are established under the same stability condition.
Resumo:
A new finite element method is developed to analyse non-conservative structures with more than one parameter behaving in a stochastic manner. As a generalization, this paper treats the subsequent non-self-adjoint random eigenvalue problem that arises when the material property values of the non-conservative structural system have stochastic fluctuations resulting from manufacturing and measurement errors. The free vibration problems of stochastic Beck's column and stochastic Leipholz column whose Young's modulus and mass density are distributed stochastically are considered. The stochastic finite element method that is developed, is implemented to arrive at a random non-self-adjoint algebraic eigenvalue problem. The stochastic characteristics of eigensolutions are derived in terms of the stochastic material property variations. Numerical examples are given. It is demonstrated that, through this formulation, the finite element discretization need not be dependent on the characteristics of stochastic processes of the fluctuations in material property value.
Resumo:
The set of attainable laws of the joint state-control process of a controlled diffusion is analyzed from a convex analytic viewpoint. Various equivalence relations depending on one-dimensional marginals thereof are defined on this set and the corresponding equivalence classes are studied.
Resumo:
Columns which have stochastically distributed Young's modulus and mass density and are subjected to deterministic periodic axial loadings are considered. The general case of a column supported on a Winkler elastic foundation of random stiffness and also on discrete elastic supports which are also random is considered. Material property fluctuations are modeled as independent one-dimensional univariate homogeneous real random fields in space. In addition to autocorrelation functions or their equivalent power spectral density functions, the input random fields are characterized by scale of fluctuations or variance functions for their second order properties. The foundation stiffness coefficient and the stiffnesses of discrete elastic supports are treated to constitute independent random variables. The system equations of boundary frequencies are obtained using Bolotin's method for deterministic systems. Stochastic FEM is used to obtain the discrete system with random as well as periodic coefficients. Statistical properties of boundary frequencies are derived in terms of input parameter statistics. A complete covariance structure is obtained. The equations developed are illustrated using a numerical example employing a practical correlation structure.
Resumo:
The statistical properties of fractional Brownian walks are used to construct a path integral representation of the conformations of polymers with different degrees of bond correlation. We specifically derive an expression for the distribution function of the chains’ end‐to‐end distance, and evaluate it by several independent methods, including direct evaluation of the discrete limit of the path integral, decomposition into normal modes, and solution of a partial differential equation. The distribution function is found to be Gaussian in the spatial coordinates of the monomer positions, as in the random walk description of the chain, but the contour variables, which specify the location of the monomer along the chain backbone, now depend on an index h, the degree of correlation of the fractional Brownian walk. The special case of h=1/2 corresponds to the random walk. In constructing the normal mode picture of the chain, we conjecture the existence of a theorem regarding the zeros of the Bessel function.
Resumo:
A von Mises truss with stochastically varying material properties is investigated for snapthrough instability. The variability of the snap-through load is calculated analytically as a function of the material property variability represented as a stochastic process. The bounds are established which are independent of the knowledge of the complete description of correlation structure which is seldom possible using the experimental data. Two processes are considered to represent the material property variability and the results are presented graphically. Ein von Mises Fachwerk mit stochastisch verteilten Materialeigenschaften wird bezüglich der Durchschlagsinstabilität untersucht. Die Spannbreite der Durchschlagslast wird analytisch als Funktion der Spannbreite der Materialeigenschaften berechnet, die stochastisch verteilt angenommen werden. Eine explizite Gesamtbeschreibung der Struktur ist bei Benutzung experimenteller Daten selten möglich. Deshalb werden Grenzen für die Durchschlagskraft entwickelt, die von der Kenntnis dieser Gesamtbeschreibung unabhängig sind. Zwei Grenzfälle werden betrachtet, um die Spannbreite der Materialeigenschaften darzustellen. Die Ergebnisse werden grafisch dargestellt.
Resumo:
A new formula for the solution of the general Abel Integral equation is derived, and an important special case is checked with the known result.
Resumo:
In linear elastic fracture mechanics (LEFM), Irwin's crack closure integral (CCI) is one of the signficant concepts for the estimation of strain energy release rates (SERR) G, in individual as well as mixed-mode configurations. For effective utilization of this concept in conjunction with the finite element method (FEM), Rybicki and Kanninen [Engng Fracture Mech. 9, 931 938 (1977)] have proposed simple and direct estimations of the CCI in terms of nodal forces and displacements in the elements forming the crack tip from a single finite element analysis instead of the conventional two configuration analyses. These modified CCI (MCCI) expressions are basically element dependent. A systematic derivation of these expressions using element stress and displacement distributions is required. In the present work, a general procedure is given for the derivation of MCCI expressions in 3D problems with cracks. Further, a concept of sub-area integration is proposed which facilitates evaluation of SERR at a large number of points along the crack front without refining the finite element mesh. Numerical data are presented for two standard problems, a thick centre-cracked tension specimen and a semi-elliptical surface crack in a thick slab. Estimates for the stress intensity factor based on MCCI expressions corresponding to eight-noded brick elements are obtained and compared with available results in the literature.
Resumo:
We develop four algorithms for simulation-based optimization under multiple inequality constraints. Both the cost and the constraint functions are considered to be long-run averages of certain state-dependent single-stage functions. We pose the problem in the simulation optimization framework by using the Lagrange multiplier method. Two of our algorithms estimate only the gradient of the Lagrangian, while the other two estimate both the gradient and the Hessian of it. In the process, we also develop various new estimators for the gradient and Hessian. All our algorithms use two simulations each. Two of these algorithms are based on the smoothed functional (SF) technique, while the other two are based on the simultaneous perturbation stochastic approximation (SPSA) method. We prove the convergence of our algorithms and show numerical experiments on a setting involving an open Jackson network. The Newton-based SF algorithm is seen to show the best overall performance.
Resumo:
The free vibration of strings with randomly varying mass and stiffness is considered. The joint probability density functions of the eigenvalues and eigenfunctions are characterized in terms of the solution of a pair of stochastic non-linear initial value problems. Analytical solutions of these equations based on the method of stochastic averaging are obtained. The effects of the mean and autocorrelation of the mass process are included in the analysis. Numerical results for the marginal probability density functions of eigenvalues and eigenfunctions are obtained and are found to compare well with Monte Carlo simulation results. The random eigenvalues, when normalized with respect to their corresponding deterministic values, are observed to tend to become first order stochastically stationary with respect to the mode count.
Resumo:
The Modified Crack Closure Integral (MCCI) technique based on Irwin's crack closure integral concept is very effective for estimation of strain energy release rates G in individual as well as mixed-mode configurations in linear elastic fracture mechanics problems. In a finite element approach, MCCI can be evaluated in the post-processing stage in terms of nodal forces and displacements near the crack tip. The MCCI expressions are however, element dependent and require a systematic derivation using stress and displacement distributions in the crack tip elements. Earlier a general procedure was proposed by the present authors for the derivation of MCCI expressions for 3-dimensional (3-d) crack problems modelled with 8-noded brick elements. A concept of sub-area integration was proposed to estimate strain energy release rates at a large number of points along the crack front. In the present paper a similar procedure is adopted for the derivation of MCCI expressions for 3-d cracks modelled with 20-noded brick elements. Numerical results are presented for centre crack tension and edge crack shear specimens in thick slabs, showing a comparison between present results and those available in the literature.
Resumo:
The Modified Crack Closure Integral (MCCI) technique based on Irwin's crack closure integral concept is very effective for estimation of strain energy release rates G in individual as well as mixed-mode configurations in linear elastic fracture mechanics problems. In a finite element approach, MCCI can be evaluated in the post-processing stage in terms of nodal forces and displacements near the crack tip. The MCCI expressions are however, element dependent and require a systematic derivation using stress and displacement distributions in the crack tip elements. Earlier a general procedure was proposed by the present authors for the derivation of MCCI expressions for 3-dimensional (3-d) crack problems modelled with 8-noded brick elements. A concept of sub-area integration was proposed to estimate strain energy release rates at a large number of points along the crack front. In the present paper a similar procedure is adopted for the derivation of MCCI expressions for 3-d cracks modelled with 20-noded brick elements. Numerical results are presented for centre crack tension and edge crack shear specimens in thick slabs, showing a comparison between present results and those available in the literature.
Resumo:
Precipitation in small droplets involving emulsions, microemulsions or vesicles is important for Producing multicomponent ceramics and nanoparticles. Because of the random nature of nucleation and the small number of particles in a droplet, the use of a deterministic population balance equation for predicting the number density of particles may lead to erroneous results even for evaluating the mean behavior of such systems. A comparison between the predictions made through stochastic simulation and deterministic population balance involving small droplets has been made for two simple systems, one involving crystallization and the other a single-component precipitation. The two approaches have been found to yield quite different results under a variety of conditions. Contrary to expectation, the smallness of the population alone does not cause these deviations. Thus, if fluctuation in supersaturation is negligible, the population balance and simulation predictions concur. However, for large fluctuations in supersaturation, the predictions differ significantly, indicating the need to take the stochastic nature of the phenomenon into account. This paper describes the stochastic treatment of populations, which involves a sequence of so-called product density equations and forms an appropriate framework for handling small systems.