151 resultados para Stability of airplanes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Critical buckling loads of laminated fibre-reinforced plastic square panels have been obtained using the finite element method. Various boundary conditions, lay-up details, fibre orientations, cut-out sizes are considered. A 36 degrees of freedom triangular element, based on the classical lamination theory (CLT) has been used for the analysis. The performance of this element is validated by comparing results with some of those available in literature. New results have been given for several cases of boundary conditions for [0°/ ± 45°/90°]s laminates. The effect of fibre-orientation in the ply on the buckling loads has been investigated by considering [±?]6s laminates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Leipholz column which is having the Young modulus and mass per unit length as stochastic processes and also the distributed tangential follower load behaving stochastically is considered. The non self-adjoint differential equation and boundary conditions are considered to have random field coefficients. The standard perturbation method is employed. The non self-adjoint operators are used within the regularity domain. Full covariance structure of the free vibration eigenvalues and critical loads is derived in terms of second order properties of input random fields characterizing the system parameter fluctuations. The mean value of critical load is calculated using the averaged problem and the corresponding eigenvalue statistics are sought. Through the frequency equation a transformation is done to yield load parameter statistics. A numerical study incorporating commonly observed correlation models is reported which illustrates the full potentials of the derived expressions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoporous structures are widely used for many applications and hence it Is important to investigate their thermal stability. We study the stability of spherical nanoporous aggregates using phase-field simulations that explore systematically the effect of grain boundary diffusion, surface diffusion, and grain boundary mobility on the pathways for microstructural evolution. Our simulations for different combinations of surface and GB diffusivity and GB mobility show four distinct microstructural pathways en route to 100% density: multiple dosed pores, hollow shells, hollow shells with a core, and multiple interconnected pores. The microstructures from our simulations are consistent with experimental observations in several different systems. Our results have important implications for rational synthesis of hollow nanostructures or aggregates with open pores, and for controlling the stability of nanoporous aggregates that are widely used for many applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new formulation of the stability of boundary-layer flows in pressure gradients is presented, taking into account the spatial development of the flow and utilizing a special coordinate transformation. The formulation assumes that disturbance wavelength and eigenfunction vary downstream no more rapidly than the boundary-layer thickness, and includes all terms nominally of order R(-1) in the boundary-layer Reynolds number R. In Blasius flow, the present approach is consistent with that of Bertolotti et al. (1992) to O(R(-1)) but simpler (i.e. has fewer terms), and may best be seen as providing a parametric differential equation which can be solved without having to march in space. The computed neutral boundaries depend strongly on distance from the surface, but the one corresponding to the inner maximum of the streamwise velocity perturbation happens to be close to the parallel flow (Orr-Sommerfeld) boundary. For this quantity, solutions for the Falkner-Skan flows show the effects of spatial growth to be striking only in the presence of strong adverse pressure gradients. As a rational analysis to O(R(-1)) demands inclusion of higher-order corrections on the mean flow, an illustrative calculation of one such correction, due to the displacement effect of the boundary layer, is made, and shown to have a significant destabilizing influence on the stability boundary in strong adverse pressure gradients. The effect of non-parallelism on the growth of relatively high frequencies can be significant at low Reynolds numbers, but is marginal in other cases. As an extension of the present approach, a method of dealing with non-similar flows is also presented and illustrated. However, inherent in the transformation underlying the present approach is a lower-order non-parallel theory, which is obtained by dropping all terms of nominal order R(-1) except those required for obtaining the lowest-order solution in the critical and wall layers. It is shown that a reduced Orr-Sommerfeld equation (in transformed coordinates) already contains the major effects of non-parallelism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stability of the Hagen-Poiseuille flow of a Newtonian fluid in a tube of radius R surrounded by an incompressible viscoelastic medium of radius R < r < HR is analysed in the high Reynolds number regime. The dimensionless numbers that affect the fluid flow are the Reynolds number Re = (rho VR/eta), the ratio of the viscosities of the wall and fluid eta(r) = (eta(s)/eta), the ratio of radii H and the dimensionless velocity Gamma = (rho V-2/G)(1/2). Here rho is the density of the fluid, G is the coefficient of elasticity of the wall and V is the maximum fluid velocity at the centre of the tube. In the high Reynolds number regime, an asymptotic expansion in the small parameter epsilon = (1/Re) is employed. In the leading approximation, the viscous effects are neglected and there is a balance between the inertial stresses in the fluid and the elastic stresses in the medium. There are multiple solutions for the leading-order growth rate s((0)), all of which are imaginary, indicating that the fluctuations are neutrally stable, since there is no viscous dissipation of energy or transfer of energy from the mean flow to the fluctuations due to the Reynolds stress. There is an O(epsilon(1/2)) correction to the growth rate, s((1)), due to the presence of a wall layer of thickness epsilon(1/2)R where the viscous stresses are O(epsilon(1/2)) smaller than the inertial stresses. An energy balance analysis indicates that the transfer of energy from the mean flow to the fluctuations due to the Reynolds stress in the wall layer is exactly cancelled by an opposite transfer of equal magnitude due to the deformation work done at the interface, and there is no net transfer from the mean flow to the fluctuations. Consequently, the fluctuations are stabilized by the viscous dissipation in the wall layer, and the real part of s(1) is negative. However, there are certain values of Gamma and wavenumber k where s((1)) = 0. At these points, the wall layer amplitude becomes zero because the tangential velocity boundary condition is identically satisfied by the inviscid flow solution. The real part of the O(epsilon) correction to the growth rate s((2)) turns out to be negative at these points, indicating a small stabilizing effect due to the dissipation in the bulk of the fluid and the wall material. It is found that the minimum value of s((2)) increases proportional to (H-1)(-2) for (H-1) much less than 1 (thickness of wall much less than the tube radius), and decreases proportional to H-4 for H much greater than 1. The damping rate for the inviscid modes is smaller than that for the viscous wall and centre modes in a rigid tube, which have been determined previously using a singular perturbation analysis. Therefore, these are the most unstable modes in the flow through a flexible tube

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stability of Hagen-Poiseuille flow of a Newtonian fluid of viscosity eta in a tube of radius R surrounded by a viscoelastic medium of elasticity G and viscosity eta(s) occupying the annulus R < r < HR is determined using a linear stability analysis. The inertia of the fluid and the medium are neglected, and the mass and momentum conservation equations for the fluid and wall are linear. The only coupling between the mean flow and fluctuations enters via an additional term in the boundary condition for the tangential velocity at the interface, due to the discontinuity in the strain rate in the mean flow at the surface. This additional term is responsible for destabilizing the surface when the mean velocity increases beyond a transition value, and the physical mechanism driving the instability is the transfer of energy from the mean flow to the fluctuations due to the work done by the mean flow at the interface. The transition velocity Gamma(t) for the presence of surface instabilities depends on the wavenumber k and three dimensionless parameters: the ratio of the solid and fluid viscosities eta(r) = (eta(s)/eta), the capillary number Lambda = (T/GR) and the ratio of radii H, where T is the surface tension of the interface. For eta(r) = 0 and Lambda = 0, the transition velocity Gamma(t) diverges in the limits k much less than 1 and k much greater than 1, and has a minimum for finite k. The qualitative behaviour of the transition velocity is the same for Lambda > 0 and eta(r) = 0, though there is an increase in Gamma(t) in the limit k much greater than 1. When the viscosity of the surface is non-zero (eta(r) > 0), however, there is a qualitative change in the Gamma(t) vs. k curves. For eta(r) < 1, the transition velocity Gamma(t) is finite only when k is greater than a minimum value k(min), while perturbations with wavenumber k < k(min) are stable even for Gamma--> infinity. For eta(r) > 1, Gamma(t) is finite only for k(min) < k < k(max), while perturbations with wavenumber k < k(min) or k > k(max) are stable in the limit Gamma--> infinity. As H decreases or eta(r) increases, the difference k(max)- k(min) decreases. At minimum value H = H-min, which is a function of eta(r), the difference k(max)-k(min) = 0, and for H < H-min, perturbations of all wavenumbers are stable even in the limit Gamma--> infinity. The calculations indicate that H-min shows a strong divergence proportional to exp (0.0832 eta(r)(2)) for eta(r) much greater than 1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new design technique for an SVC-based power system damping controller has been proposed. The controller attempts to place all plant poles within a specified region on the s-plane to guarantee the desired closed loop performance. The use of Horowitz's quantitative feedback theory (QFT) permits the design of a 'fixed gain controller' that maintains its performance in spite of large variations in the plant parameters during its normal course of operation. The required controller parameters are arrived at by solving an optimization problem that incorporates the control specifications. The performance of this robust controller has been evaluated on a single machine infinite bus system equipped with a mid point SVC, and the results are shown to be consistent with the expected performance of the stabilizer. (C) 1998 Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flexible cantilever pipes conveying fluids with high velocity are analysed for their dynamic response and stability behaviour. The Young's modulus and mass per unit length of the pipe material have a stochastic distribution. The stochastic fields, that model the fluctuations of Young's modulus and mass density are characterized through their respective means, variances and autocorrelation functions or their equivalent power spectral density functions. The stochastic non self-adjoint partial differential equation is solved for the moments of characteristic values, by treating the point fluctuations to be stochastic perturbations. The second-order statistics of vibration frequencies and mode shapes are obtained. The critical flow velocity is-first evaluated using the averaged eigenvalue equation. Through the eigenvalue equation, the statistics of vibration frequencies are transformed to yield critical flow velocity statistics. Expressions for the bounds of eigenvalues are obtained, which in turn yield the corresponding bounds for critical flow velocities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rotor-body system with blades interconnected through viscoelastic elements is analyzed for response, loads, and stability in propulsive trim in ground contact and under forward-flight conditions, A conceptual model of a multibladed rotor with rigid flap and lag motions, and the fuselage with rigid pitch and roll motions is considered, Although the interconnecting elements are placed in the in-plane direction, considerable coupling between the flap-lag motions of the blades can occur in certain ranges of interblade element stiffness, Interblade coupling can yield significant changes in the response, loads, and stability that are dependent on the interblade element and rotor-body parameters, Ground resonance stability investigations show that by tuning the interblade element stiffness, the ground resonance instability problem can be reduced or eliminated, The interblade elements with damping and stiffness provide an effective method to overcome the problems of ground and air resonance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the ergodic properties of hybrid systems modelled by diffusion processes with state-dependent switching. We investigate the sufficient conditions expressed in terms of the parameters of the underlying process which would ensure the existence of a unique invariant probability and stability in distribution of the flow. It turns out that the conditions would depend on certain averaging mechanisms over the states of the discrete component of the hybrid system. (C) 1999 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flows with velocity profiles very different from the parabolic velocity profile can occur in the entrance region of a tube as well as in tubes with converging/diverging cross-sections. In this paper, asymptotic and numerical studies are undertaken to analyse the temporal stability of such 'non-parabolic' flows in a flexible tube in the limit of high Reynolds numbers. Two specific cases are considered: (i) developing flow in a flexible tube; (ii) flow in a slightly converging flexible tube. Though the mean velocity profile contains both axial and radial components, the flow is assumed to be locally parallel in the stability analysis. The fluid is Newtonian and incompressible, while the flexible wall is modelled as a viscoelastic solid. A high Reynolds number asymptotic analysis shows that the non-parabolic velocity profiles can become unstable in the inviscid limit. This inviscid instability is qualitatively different from that observed in previous studies on the stability of parabolic flow in a flexible tube, and from the instability of developing flow in a rigid tube. The results of the asymptotic analysis are extended numerically to the moderate Reynolds number regime. The numerical results reveal that the developing flow could be unstable at much lower Reynolds numbers than the parabolic flow, and hence this instability can be important in destabilizing the fluid flow through flexible tubes at moderate and high Reynolds number. For flow in a slightly converging tube, even small deviations from the parabolic profile are found to be sufficient for the present instability mechanism to be operative. The dominant non-parallel effects are incorporated using an asymptotic analysis, and this indicates that non-parallel effects do not significantly affect the neutral stability curves. The viscosity of the wall medium is found to have a stabilizing effect on this instability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The equilibrium geometries and fundamental vibration frequencies of the Li2F system were calculated by ab initio methods at the MP2 = full/6-311(+ +)G** and CCSD(T) levels. Two isomers were observed and are best described as salts of the Li-2(+) cation with F-. A linear isomer with an arrangement of atoms such as Li-Li-F and a bent C-2v structure are predicted. The stability of these structures are discussed in terms of charge resonance between Li and Li+. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When the cold accretion disc coupling between neutral gas and a magnetic field is so weak that the magnetorotational instability is less effective or even stops working, it is of prime interest to investigate the pure hydrodynamic origin of turbulence and transport phenomena. As the Reynolds number increases, the relative importance of the non-linear term in the hydrodynamic equation increases. In an accretion disc where the molecular viscosity is too small, the Reynolds number is large enough for the non-linear term to have new effects. We investigate the scenario of the `weakly non-linear' evolution of the amplitude of the linear mode when the flow is bounded by two parallel walls. The unperturbed flow is similar to the plane Couette flow, but with the Coriolis force included in the hydrodynamic equation. Although there is no exponentially growing eigenmode, because of the self-interaction, the least stable eigenmode will grow in an intermediate phase. Later, this will lead to higher-order non-linearity and plausible turbulence. Although the non-linear term in the hydrodynamic equation is energy-conserving, within the weakly non-linear analysis it is possible to define a lower bound of the energy (alpha A(c)(2), where A(c) is the threshold amplitude) needed for the flow to transform to the turbulent phase. Such an unstable phase is possible only if the Reynolds number >= 10(3-4). The numerical difficulties in obtaining such a large Reynolds number might be the reason for the negative result of numerical simulations on a pure hydrodynamic Keplerian accretion disc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stability of fluid flow past a membrane of infinitesimal thickness is analysed in the limit of zero Reynolds number using linear and weakly nonlinear analyses. The system consists of two Newtonian fluids of thickness R* and H R*, separated by an infinitesimally thick membrane, which is flat in the unperturbed state. The dynamics of the membrane is described by its normal displacement from the flat state, as well as a surface displacement field which provides the displacement of material points from their steady-state positions due to the tangential stress exerted by the fluid flow. The surface stress in the membrane (force per unit length) contains an elastic component proportional to the strain along the surface of the membrane, and a viscous component proportional to the strain rate. The linear analysis reveals that the fluctuations become unstable in the long-wave (alpha --> 0) limit when the non-dimensional strain rate in the fluid exceeds a critical value Lambda(t), and this critical value increases proportional to alpha(2) in this limit. Here, alpha is the dimensionless wavenumber of the perturbations scaled by the inverse of the fluid thickness R*(-1), and the dimensionless strain rate is given by Lambda(t) = ((gamma) over dot* R*eta*/Gamma*), where eta* is the fluid viscosity, Gamma* is the tension of the membrane and (gamma) over dot* is the strain rate in the fluid. The weakly nonlinear stability analysis shows that perturbations are supercritically stable in the alpha --> 0 limit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seismic design of reinforced soil structures involves many uncertainties that arise from the backfill soil properties and tensile strength of the reinforcement which is not addressed in current design guidelines. This paper highlights the significance of variability in the internal stability assessment of reinforced soil structures. Reliability analysis is applied to estimate probability of failure and pseudo‐static approach has been used for the calculation of the tensile strength and length of the reinforcement needed to maintain the internal stability against tension and pullout failures. Logarithmic spiral failure surface has been considered in conjunction with the limit equilibrium method. Two modes of failure namely, tension failure and pullout failure have been considered. The influence of variations of the backfill soil friction angle, the tensile strength of reinforcement, horizontal seismic acceleration on the reliability index against tension failure and pullout failure of reinforced earth structure have been discussed.