294 resultados para Square Wave Voltammetry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified form of Green's integral theorem is employed to derive the energy identity in any water wave diffraction problem in a single-layer fluid for free-surface boundary condition with higher-order derivatives. For a two-layer fluid with free-surface boundary condition involving higher-order derivatives, two forms of energy identities involving transmission and reflection coefficients for any wave diffraction problem are also derived here by the same method. Based on this modified Green's theorem, hydrodynamic relations such as the energy-conservation principle and modified Haskind–Hanaoka relation are derived for radiation and diffraction problems in a single as well as two-layer fluid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The linear spin-1/2 Heisenberg antiferromagnet with exchanges J(1) and J(2) between first and second neighbors has a bond-order wave (BOW) phase that starts at the fluid-dimer transition at J(2)/J(1)=0.2411 and is particularly simple at J(2)/J(1)=1/2. The BOW phase has a doubly degenerate singlet ground state, broken inversion symmetry, and a finite-energy gap E-m to the lowest-triplet state. The interval 0.4 < J(2)/J(1) < 1.0 has large E-m and small finite-size corrections. Exact solutions are presented up to N = 28 spins with either periodic or open boundary conditions and for thermodynamics up to N = 18. The elementary excitations of the BOW phase with large E-m are topological spin-1/2 solitons that separate BOWs with opposite phase in a regular array of spins. The molar spin susceptibility chi(M)(T) is exponentially small for T << E-m and increases nearly linearly with T to a broad maximum. J(1) and J(2) spin chains approximate the magnetic properties of the BOW phase of Hubbard-type models and provide a starting point for modeling alkali-tetracyanoquinodimethane salts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractal Minkowski curves to design a compact dual-frequency microstrip ring antenna are proposed. Sides of a square ring have been selectively replaced with first and second iterations of the generalised fractal geometry to design a smaller antenna with dual-frequency operation. This behaviour has been explained based on current distributions on the antenna structure. Measured results compare well with electromagnetic simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Space-time block codes (STBCs) obtained from non-square complex orthogonal designs are bandwidth efficient compared to those from square real/complex orthogonal designs for colocated coherent MIMO systems and has other applications in (i) non-coherent MIMO systems with non-differential detection, (ii) Space-Time-Frequency codes for MIMO-OFDM systems and (iii) distributed space-time coding for relay channels. Liang (IEEE Trans. Inform. Theory, 2003) has constructed maximal rate non-square designs for any number of antennas, with rates given by [(a+1)/(2a)] when number of transmit antennas is 2a-1 or 2a. However, these designs have large delays. When large number of antennas are considered this rate is close to 1/2. Tarokh et al (IEEE Trans. Inform. Theory, 1999) have constructed rate 1/2 non-square CODs using the rate-1 real orthogonal designs for any number of antennas, where the decoding delay of these codes is less compared to the codes constructed by Liang for number of transmit antennas more than 5. In this paper, we construct a class of rate-1/2 codes for arbitrary number of antennas where the decoding delay is reduced by 50% when compared with the rate-1/2 codes given by Tarokh et al. It is also shown that even though scaling the variables helps to lower the delay it can not be used to increase the rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mapping the shear wave velocity profile is an important part in seismic hazard and microzonation studies. The shear wave velocity of soil in the city of Bangalore was mapped using the Multichannel Analysis of Surface Wave (MASW) technique. An empirical relationship was found between the Standard Penetration Test (SPT) corrected N value ((N1)60cs) and measured shear wave velocity (Vs). The survey points were selected in such a way that the results represent the entire Bangalore region, covering an area of 220 km2. Fifty-eight 1-D and 20 2-D MASW surveys were performed and their velocity profiles determined. The average shear wave velocity of Bangalore soils was evaluated for depths of 5 m, 10 m, 15 m, 20 m, 25 m and 30 m. The sub-soil classification was made for seismic local site effect evaluation based on average shear wave velocity of 30-m depth (Vs30) of sites using the National Earthquake Hazards Reduction Program (NEHRP) and International Building Code (IBC) classification. Mapping clearly indicates that the depth of soil obtained from MASW closely matches with the soil layers identified in SPT bore holes. Estimation of local site effects for an earthquake requires knowledge of the dynamic properties of soil, which is usually expressed in terms of shear wave velocity. Hence, to make use of abundant SPT data available on many geotechnical projects in Bangalore, an attempt was made to develop a relationship between Vs (m/s) and (N1)60cs. The measured shear wave velocity at 38 locations close to SPT boreholes was used to generate the correlation between the corrected N values and shear wave velocity. A power fit model correlation was developed with a regression coefficient (R2) of 0.84. This relationship between shear wave velocity and corrected SPT N values correlates well with the Japan Road Association equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical investigation of the transverse shear wave mode tuning with a resonator mass (packing mass) on a Lead Zirconium Titanate (PZT) crystal bonded together with a host plate and its equivalent electric circuit parameters are presented. The energy transfer into the structure for this type of wave modes are much higher in this new design. The novelty of the approach here is the tuning of a single wave mode in the thickness direction using a resonator mass. First, a one-dimensional constitutive model assuming the strain induced only in the thickness direction is considered. As the input voltage is applied to the PZT crystal in the thickness direction, the transverse normal stress distribution induced into the plate is assumed to have parabolic distribution, which is presumed as a function of the geometries of the PZT crystal, packing mass, substrate and the wave penetration depth of the generated wave. For the PZT crystal, the harmonic wave guide solution is assumed for the mechanical displacement and electric fields, while for the packing mass, the former is solved using the boundary conditions. The electromechanical characteristics in terms of the stress transfer, mechanical impedance, electrical displacement, velocity and electric field are analyzed. The analytical solutions for the aforementioned entities are presented on the basis of varying the thickness of the PZT crystal and the packing mass. The results show that for a 25% increase in the thickness of the PZT crystal, there is ~38% decrease in the first resonant frequency, while for the same change in the thickness of the packing mass, the decrease in the resonant frequency is observed as ~35%. Most importantly the tuning of the generated wave can be accomplished with the packing mass at lower frequencies easily. To the end, an equivalent electric circuit, for tuning the transverse shear wave mode is analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen transfer rate and the corresponding power requirement to operate the rotor are vital for design and scale-up of surface aerators. Present study develops simulation or scale-up criterion correlating the oxygen transsimulation fer coefficient and power number along with a parameter governing theoretical power per unit volume (X, which is defined as equal to (FR1/3)-R-4/3, where F and R are impellers' Fronde and Reynolds number, respectively). Based on such scale-up criteria, design considerations are developed to save energy requirements while designing square tank surface aerators. It has been demonstrated that energy can be saved substantially if the aeration tanks are run at relatively higher input powers. It is also demonstrated that smaller sized tanks are more energy conservative and economical when compared to big sized tanks, while aerating the same volume of water, and at the same time by maintaining a constant input power in all the tanks irrespective of their size. An example illustrating how energy can be reduced while designing different sized aerators is given. The results presented have a wide application in biotechnology and bioengineering areas with a particular emphasis on the design of appropriate surface aeration systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen transfer rate and the corresponding power requirement to operate the rotor are vital for design and scale-up of surface aerators. Present study develops simulation or scale-up criterion correlating the oxygen transsimulation fer coefficient and power number along with a parameter governing theoretical power per unit volume (X, which is defined as equal to (FR1/3)-R-4/3, where F and R are impellers' Fronde and Reynolds number, respectively). Based on such scale-up criteria, design considerations are developed to save energy requirements while designing square tank surface aerators. It has been demonstrated that energy can be saved substantially if the aeration tanks are run at relatively higher input powers. It is also demonstrated that smaller sized tanks are more energy conservative and economical when compared to big sized tanks, while aerating the same volume of water, and at the same time by maintaining a constant input power in all the tanks irrespective of their size. An example illustrating how energy can be reduced while designing different sized aerators is given. The results presented have a wide application in biotechnology and bioengineering areas with a particular emphasis on the design of appropriate surface aeration systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gravitational waveform (GWF) generated by inspiralling compact binaries moving in quasi-circular orbits is computed at the third post-Newtonian (3PN) approximation to general relativity. Our motivation is two-fold: (i) to provide accurate templates for the data analysis of gravitational wave inspiral signals in laser interferometric detectors; (ii) to provide the associated spin-weighted spherical harmonic decomposition to facilitate comparison and match of the high post-Newtonian prediction for the inspiral waveform to the numerically-generated waveforms for the merger and ringdown. This extension of the GWF by half a PN order (with respect to previous work at 2.5PN order) is based on the algorithm of the multipolar post-Minkowskian formalism, and mandates the computation of the relations between the radiative, canonical and source multipole moments for general sources at 3PN order. We also obtain the 3PN extension of the source multipole moments in the case of compact binaries, and compute the contributions of hereditary terms (tails, tails-of-tails and memory integrals) up to 3PN order. The end results are given for both the complete plus and cross polarizations and the separate spin-weighted spherical harmonic modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-assembly of a rigid tripyridyl linker with a bidentate 90 degrees Pt(II) acceptor yielded a somewhat unusual double square cage, representing the first example of Pt(II) cage of such shape. Multinuclear NMR as well as single-crystal structure analysis characterized the cage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-assembly of a rigid tripyridyl linker with a bidentate 90 degrees Pt(II) acceptor yielded a somewhat unusual double square cage, representing the first example of Pt(II) cage of such shape. Multinuclear NMR as well as single-crystal structure analysis characterized the cage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Linear Processing Complex Orthogonal Design (LPCOD) is a p x n matrix epsilon, (p >= n) in k complex indeterminates x(1), x(2),..., x(k) such that (i) the entries of epsilon are complex linear combinations of 0, +/- x(i), i = 1,..., k and their conjugates, (ii) epsilon(H)epsilon = D, where epsilon(H) is the Hermitian (conjugate transpose) of epsilon and D is a diagonal matrix with the (i, i)-th diagonal element of the form l(1)((i))vertical bar x(1)vertical bar(2) + l(2)((i))vertical bar x(2)vertical bar(2)+...+ l(k)((i))vertical bar x(k)vertical bar(2) where l(j)((i)), i = 1, 2,..., n, j = 1, 2,...,k are strictly positive real numbers and the condition l(1)((i)) = l(2)((i)) = ... = l(k)((i)), called the equal-weights condition, holds for all values of i. For square designs it is known. that whenever a LPCOD exists without the equal-weights condition satisfied then there exists another LPCOD with identical parameters with l(1)((i)) = l(2)((i)) = ... = l(k)((i)) = 1. This implies that the maximum possible rate for square LPCODs without the equal-weights condition is the same as that or square LPCODs with equal-weights condition. In this paper, this result is extended to a subclass of non-square LPCODs. It is shown that, a set of sufficient conditions is identified such that whenever a non-square (p > n) LPCOD satisfies these sufficient conditions and do not satisfy the equal-weights condition, then there exists another LPCOD with the same parameters n, k and p in the same complex indeterminates with l(1)((i)) = l(2)((i)) = ... = l(k)((i)) = 1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports a numerical method for modelling the elastic wave propagation in plates. The method is based on the partition of unity approach, in which the approximate spectral properties of the infinite dimensional system are embedded within the space of a conventional finite element method through a consistent technique of waveform enrichment. The technique is general, such that it can be applied to the Lagrangian family of finite elements with specific waveform enrichment schemes, depending on the dominant modes of wave propagation in the physical system. A four-noded element for the Reissner-indlin plate is derived in this paper, which is free of shear locking. Such a locking-free property is achieved by removing the transverse displacement degrees of freedom from the element nodal variables and by recovering the same through a line integral and a weak constraint in the frequency domain. As a result, the frequency-dependent stiffness matrix and the mass matrix are obtained, which capture the higher frequency response with even coarse meshes, accurately. The steps involved in the numerical implementation of such element are discussed in details. Numerical studies on the performance of the proposed element are reported by considering a number of cases, which show very good accuracy and low computational cost. Copyright (C)006 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a case study of formal verification of full-wave rectifier for analog and mixed signal designs. We have used the Checkmate tool from CMU [1], which is a public domain formal verification tool for hybrid systems. Due to the restriction imposed by Checkmate it necessitates to make the changes in the Checkmate implementation to implement the complex and non-linear system. Full-wave rectifier has been implemented by using the Checkmate custom blocks and the Simulink blocks from MATLAB from Math works. After establishing the required changes in the Checkmate implementation we are able to efficiently verify, the safety properties of the full-wave rectifier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the nonlocal elasticity theory has been incorporated into classical Euler-Bernoulli rod model to capture unique features of the nanorods under the umbrella of continuum mechanics theory. The strong effect of the nonlocal scale has been obtained which leads to substantially different wave behaviors of nanorods from those of macroscopic rods. Nonlocal Euler-Bernoulli bar model is developed for nanorods. Explicit expressions are derived for wavenumbers and wave speeds of nanorods. The analysis shows that the wave characteristics are highly over estimated by the classical rod model, which ignores the effect of small-length scale. The studies also shows that the nonlocal scale parameter introduces certain band gap region in axial wave mode where no wave propagation occurs. This is manifested in the spectrum cures as the region where the wavenumber tends to infinite (or wave speed tends to zero). The results can provide useful guidance for the study and design of the next generation of nanodevices that make use of the wave propagation properties of single-walled carbon nanotubes. (C) 2010 Elsevier B.V. All rights reserved.