133 resultados para Specific protein(s)
Resumo:
Background: Signal transduction events often involve transient, yet specific, interactions between structurally conserved protein domains and polypeptide sequences in target proteins. The identification and validation of these associating domains is crucial to understand signal transduction pathways that modulate different cellular or developmental processes. Bioinformatics strategies to extract and integrate information from diverse sources have been shown to facilitate the experimental design to understand complex biological events. These methods, primarily based on information from high-throughput experiments, have also led to the identification of new connections thus providing hypothetical models for cellular events. Such models, in turn, provide a framework for directing experimental efforts for validating the predicted molecular rationale for complex cellular processes. In this context, it is envisaged that the rational design of peptides for protein-peptide binding studies could substantially facilitate the experimental strategies to evaluate a predicted interaction. This rational design procedure involves the integration of protein-protein interaction data, gene ontology, physico-chemical calculations, domain-domain interaction data and information on functional sites or critical residues. Results: Here we describe an integrated approach called ``PeptideMine'' for the identification of peptides based on specific functional patterns present in the sequence of an interacting protein. This approach based on sequence searches in the interacting sequence space has been developed into a webserver, which can be used for the identification and analysis of peptides, peptide homologues or functional patterns from the interacting sequence space of a protein. To further facilitate experimental validation, the PeptideMine webserver also provides a list of physico-chemical parameters corresponding to the peptide to determine the feasibility of using the peptide for in vitro biochemical or biophysical studies. Conclusions: The strategy described here involves the integration of data and tools to identify potential interacting partners for a protein and design criteria for peptides based on desired biochemical properties. Alongside the search for interacting protein sequences using three different search programs, the server also provides the biochemical characteristics of candidate peptides to prune peptide sequences based on features that are most suited for a given experiment. The PeptideMine server is available at the URL: http://caps.ncbs.res.in/peptidemine
Resumo:
The contents of fibroin H RNA as a function of development have been quantitated in the posterior silk glands of Bombyx mori larvae on different days of 4th and 5th instars. The fibroin RNA levels increased during the feeding stages of larvae and the RNA got completely degraded during the interim moult. The patterns of accumulation of fibroin RNA were similar in both the instars. Although there was considerable increase in the fibroin RNA content during the 5th larval instar, the relative abundance of fibroin RNA in the total RNA was fairly constant during the 4th and 5th instars. The increased content of fibroin RNA in 5th instar was the consequence of an overall increase in transcription accompanying the development progress, rather than specific increase only in fibroin transcription. The contents of fibroin protein in the 4th and 5th instars of development have also been quantitated making use of a sensitive radioimmune assay with a purified, antifibroin antibody. There were substantial differences between 4th and 5th instars in the absolute fibroin contents as well as the relative proportion of fibroin in the total proteins. These results implied that although the fibroin gene was transcribed at the same efficiency during the 4th and 5th instars, the translational efficiency was much lower during the 4th instar. The extent of polyadenylation of fibroin RNA was similar in both instars. However, there was a two-fold increase in the polysome association of fibroin RNA in the 5th instar. Over and above this, there was substantial increase during the 5th instar in the contents of those tRNAs. (e.g. Gly, Ala and Ser) which are abundantly represented in fibroin and therefore directly related to the expression of fibroin. The increased polysome association of fibroin mRNA and the adequate supply of cognate tRNAs in the 5th instar, together contributes to the translational regulation of fibroin in a developmental stage-specific manner. Based on these observations, we propose that translational regulation plays a major role in the development stage-specific synthesis of fibroin in Bombyx mori.
Resumo:
While the need for FSH in initiating spermatogenesis in the immature rat is well accepted, its requirement for maintenance of spermatogenesis in adulthood is questioned. In the current study, using gonadotropin antisera to neutralize specifically either endogenous FSH or LH, we have investigated the effect of either FSH or LH deprivation for a 10-day period on (i) testicular macromolecular synthesis in vitro, (ii) the activities of testicular germ cell specific LDH-X and hyaluronidase enzymes, and finally (iii) on the concentration of sulphated glycoprotein (SGP-2), one of the Sertoli cell marker proteins. Both immature (35-day-old) and adult (100-day-old) rats have been used in this study. Since LH deprivation leads to a near total blockade of testosterone production, the ability of exogenous testosterone supplementation to override the effects of LH deficiency has also been evaluated. Deprivation of either of the gonadotropins significantly affected in vitro RNA and protein synthesis by both testicular minces as well as single cell preparations. Fractionation of dispersed testicular cells preincubated with labelled precursors of RNA and protein on Percoll density gradient revealed that FSH deprivation affected specifically the rate of RNA and protein synthesis of germ cell and not Leydig cell fraction. LH but not FSH deprivation inhibited [3H]thymidine incorporation into DNA. The inhibitory effect of LH could mostly be overriden by testosterone supplementation. LDH-X and hyaluronidase activities of testicular homogenates of adult rats showed significant reduction (50%; P less than .05) following either FSH or LH deprivation. Again testosterone supplementation was able to reverse the LH inhibitory effect.
Resumo:
The significance of two interface arginine residues on the structural integrity of an obligatory dimeric enzyme thymidylate synthase (TS) from Lactobacillus casei was investigated by thermal and chemical denaturation. While the R178F mutant showed apparent stability to thermal denaturation by its decreased tendency to aggregate, the Tm of the R218K mutant was lowered by 5 degrees C. Equilibrium denaturation studies in guanidinium chloride (GdmCl) and urea indicate that in both the mutants, replacement of Arg residues results in more labile quaternary and tertiary interactions. Circular dichroism studies in aqueous buffer suggest that the protein interior in R218K may be less well-packed as compared to the wild type protein. The results emphasize that quaternary interactions may influence the stability of the tertiary fold of TS. The amino acid replacements also lead to notable alteration in the ability of the unfolding intermediate of TS to aggregate. The aggregated state of partially unfolded intermediate in the R178F mutant is stable over a narrower range of denaturant concentrations. In contrast, there is an exaggerated tendency on the part of R218K to aggregate in intermediate concentrations of the denaturant. The 3 A crystal structure of the R178F mutant reveals no major structural change as a consequence of amino acid substitution. The results may be rationalized in terms of mutational effects on both the folded and unfolded state of the protein. Site specific amino acid substitutions are useful in identifying specific regions of TS involved in association of non-native protein structures.
Resumo:
Effects of undernutrition and protein malnutrition on the quantitative and qualitative changes in myelin isolated from rat brain at 3 and 8 weeks of age were investigated. Undernutrition during suckling period was induced by increasing the litter size, and continued from the 3rd to the 8th week by limited food intake, or the rats were rehabilitated with adequate food. Protein malnutrition was induced by feeding the lactating dams 5% protein diet as against 25% protein diet in controls. The protein malnourished rats were rehabilitated from the 3rd to the 8th week with the normal 25% protein diet. Undernutrition produced 16% and 35% reductions in the myelin content at 3 and 8 weeks of age, respectively, and was only partially restored on rehabilitation. Protein malnutrition caused more drastic reduction of 27% in the myelin content at 3 weeks, which was also partially restored on rehabilitation. The specific activity of 2′,3′-cyclic nucleotide 3′-phosphohydrolase was not affected by undernutrition, whereas protein malnutrition caused a 25% reduction at 3 weeks, which was totally reversed by rehabilitation. Undernutrition had not altered the relative composition of myelin proteins, but protein malnutrition resulted in a significant reduction in the proteolipid protein at 3 weeks of age, which could be reversed by rehabilitation.
Resumo:
A specific membrane receptor for plasma retinol-binding protein has been demonstrated in testicular cells. Prealbumin-2 did not show any specific binding to the membrane. The affinity of retinol-binding protein for receptor drastically decreases upon delivery of retinol and the retinol-binding protein does not enter the cell. The mechanism of delivery of retinol to the target cell by plasma retinol-binding protein has been investigated. The process involves two steps: direct binding of retinol-binding protein to the receptor and uptake of retinol by the target cell with a concomitant drastic reduction in the affinity of the retinol-binding protein to the receptor. Probably the second step of the process needs a cytosolic factor, possibly the cellular retinol-binding protein or an enzyme.The binding of retinol-binding protein to the receptor is saturable and reverible. The interaction shows a Kd value of 2.1 · 10−10 M. The specific binding of a retinol-binding protein with great affinity has been employed in the development of a method for radioassay of the receptor. The receptor level of the gonadal cell has been found to vary with the stage of differentiation. The receptor concentrations in 11-week-old birds and adult birds are comparable. Testoterone treatment of 11-week-old birds produced a substantial increase in the receptor concentration over control, while the protein content increased marginally, indicating that, probably, synthesis of the receptor is specifically induced by testoterone during spermatogenesis, and the concentration of receptor is relatively higher before the formation of the acrosome.
Resumo:
A 0.9 kb double stranded cDNA of foot and mouth disease virus (FMDV) Type Asia 1, 63/72 was cloned in an expression vector, pUR222. A protein of 38 kd was produced by the clone which reacted with the antibodies raised against the virus. A 20 kd protein which may be derived from the 38 kd protein contained the antigenic epitopes of the protein VP1 of the virus. Injection of 10-20 micrograms of the partially purified 38 and 20 kd proteins or a lysate of cells containing 240 micrograms of the proteins elicited high titers of FMDV specific antibodies in guinea pigs and cattle respectively. Also, at these concentrations, the proteins protected 5 of 8 guinea pigs and 3 of 8 cattle when challenged with a virulent virus.
Resumo:
Sesbania mosaic virus (SeMV) is a single strand positive-sense RNA plant virus that belongs to the genus Sobemovirus. The mechanism of cell-to-cell movement in sobemoviruses has not been well studied. With a view to identify the viral encoded ancillary proteins of SeMV that may assist in cell-to-cell movement of the virus, all the proteins encoded by SeMV genome were cloned into yeast Matchmaker system 3 and interaction studies were performed. Two proteins namely, viral protein genome linked (VPg) and a 10-kDa protein (P10) c v gft encoded by OFR 2a, were identified as possible interacting partners in addition to the viral coat protein (CP). Further characterization of these interactions revealed that the movement protein (MP) recognizes cognate RNA through interaction with VPg, which is covalently linked to the 59 end of the RNA. Analysis of the deletion mutants delineated the domains of MP involved in the interaction with VPg and P10. This study implicates for the first time that VPg might play an important role in specific recognition of viral genome by MP in SeMV and shed light on the possible role of P10 in the viral movement.
Resumo:
Sequence specific resonance assignment constitutes an important step towards high-resolution structure determination of proteins by NMR and is aided by selective identification and assignment of amino acid types. The traditional approach to selective labeling yields only the chemical shifts of the particular amino acid being selected and does not help in establishing a link between adjacent residues along the polypeptide chain, which is important for sequential assignments. An alternative approach is the method of amino acid selective `unlabeling' or reverse labeling, which involves selective unlabeling of specific amino acid types against a uniformly C-13/N-15 labeled background. Based on this method, we present a novel approach for sequential assignments in proteins. The method involves a new NMR experiment named, {(CO)-C-12 (i) -N-15 (i+1)}-filtered HSQC, which aids in linking the H-1(N)/N-15 resonances of the selectively unlabeled residue, i, and its C-terminal neighbor, i + 1, in HN-detected double and triple resonance spectra. This leads to the assignment of a tri-peptide segment from the knowledge of the amino acid types of residues: i - 1, i and i + 1, thereby speeding up the sequential assignment process. The method has the advantage of being relatively inexpensive, applicable to H-2 labeled protein and can be coupled with cell-free synthesis and/or automated assignment approaches. A detailed survey involving unlabeling of different amino acid types individually or in pairs reveals that the proposed approach is also robust to misincorporation of N-14 at undesired sites. Taken together, this study represents the first application of selective unlabeling for sequence specific resonance assignments and opens up new avenues to using this methodology in protein structural studies.
Resumo:
Molecular Dynamics (MD) simulations provide an atomic level account of the molecular motions and have proven to be immensely useful in the investigation of the dynamical structure of proteins. Once an MD trajectory is obtained, specific interactions at the molecular level can be directly studied by setting up appropriate combinations of distance and angle monitors. However, if a study of the dynamical behavior of secondary structures in proteins becomes important, this approach can become unwieldy. We present herein a method to study the dynamical stability of secondary structures in proteins, based on a relatively simple analysis of backbone hydrogen bonds. The method was developed for studying the thermal unfolding of beta-lactamases, but can be extended to other systems and adapted to study relevant properties.
Resumo:
Heat shock protein 90 participates in diverse biological processes ranging from protein folding, cell cycle, signal transduction and development to evolution in all eukaryotes. It is also critically involved in regulating growth of protozoa such as Dictyostelium discoideum, Leishmania donovani, Plasmodium falciparum, Trypanosoma cruzi, and Trypanosoma evansi. Selective inhibition of Hsp90 has also been explored as an intervention strategy against important human diseases such as cancer, malaria, or trypanosomiasis. Giardia lamblia, a simple protozoan parasite of humans and animals, is an important cause of diarrheal disease with significant morbidity and some mortality in tropical countries. Here we show that the G. lamblia cytosolic hsp90 ( glhsp90) is split in two similar sized fragments located 777 kb apart on the same scaffold. Intrigued by this unique arrangement, which appears to be specific for the Giardiinae, we have investigated the biosynthesis of GlHsp90. We used genome sequencing to confirm the split nature of the giardial hsp90. However, a specific antibody raised against the peptide detected a product with a mass of about 80 kDa, suggesting a post-transcriptional rescue of the genomic defect. We show evidence for the joining of the two independent Hsp90 transcripts in-trans to one long mature mRNA presumably by RNA splicing. The splicing junction carries hallmarks of classical cis-spliced introns, suggesting that the regular cis-splicing machinery may be sufficient for repair of the open reading frame. A complementary 26-nt sequence in the ``intron'' regions adjacent to the splice sites may assist in positioning the two pre-mRNAs for processing. This is the first example of post-transcriptional rescue of a split gene by trans-splicing.
Resumo:
We had earlier identified a 60 kDa nuclear lamin protein (lamin(g)) unique to the germ cells of rat testis which was subsequently shown to be antigenically conserved in germ cells of grasshopper, rooster, frog and plants. We have now obtained eight monoclonal antibodies in mouse against this lamin(g) antigen. While all the eight Mabs reacted with lamin(g) antigen in an immunoblot analysis, only three Mabs (A(11)C(7), A(11)D(4), C1F7) showed strong reactivity in the immunofluorescence analysis of the germ cells. The Mabs A(11)C(7) and A(11)D(4) showed a slight cross-reactivity with rat liver lamin B. Indirect immunofluorescence analysis of pre-meiotic, meiotic and post-meiotic germ cells with Mabs have shown that while the lamin(g) is localized in the lamina structures of spermatogonia and round spermatids, it is localized to the phase dense regions of pachytene spermatocytes which is in conformity with our previous observations using rabbit polyclonal antibodies. The localization of the antigen in the germ cells was also confirmed by immunohistochemical staining of the thin sections of seminiferous tubules. By immunostaining the surface spread pachytene spermatocytes, the antigen was further localized to the telomeric ends of the paired homologous chromosomes. Using anti-somatic lamin B antibodies, we have also demonstrated the absence of somatic lamins in meiotic and post-meiotic germ cells. The lamina structure of pre-meiotic spermatogonial nucleus contains both somatic lamin B and lamin(g) as evidenced by immunofluorescence studies with two differently fluorochrome labelled anti-lamin B and anti-lamin(g) antibodies. The selective retention of lamin(g) in the pachytene spermatocytes is probably essential for anchoring the telomeric ends of the paired chromosomes to the inner nuclear membrane.
Resumo:
The activity of many proteins orchestrating different biological processes is regulated by allostery, where ligand binding at one site alters the function of another site. Allosteric changes can be brought about by either a change in the dynamics of a protein, or alteration in its mean structure. We have investigated the mechanisms of allostery induced by chemically distinct ligands in the cGMP-binding, cGMP-specific phosphodiesterase, PDE5. PDE5 is the target for catalytic site inhibitors, such as sildenafil, that are used for the treatment of erectile dysfunction and pulmonary hypertension. PDE5 is a multidomain protein and contains two N-terminal cGMP-specific phosphodiesterase, bacterial adenylyl cyclase, FhLA transcriptional regulator (GAF) domains, and a C-terminal catalytic domain. Cyclic GMP binding to the GAFa domain and sildenafil binding to the catalytic domain result in conformational changes, which to date have been studied either with individual domains or with purified enzyme. Employing intramolecular bioluminescence resonance energy transfer, which can monitor conformational changes both in vitro and in intact cells, we show that binding of cGMP and sildenafil to PDE5 results in distinct conformations of the protein. Metal ions bound to the catalytic site also allosterically modulated cGMP- and sildenafil-induced conformational changes. The sildenafil-induced conformational change was temperature-sensitive, whereas cGMP-induced conformational change was independent of temperature. This indicates that different allosteric ligands can regulate the conformation of a multidomain protein by distinct mechanisms. Importantly, this novel PDE5 sensor has general physiological and clinical relevance because it allows the identification of regulators that can modulate PDE5 conformation in vivo.
Resumo:
Nuclear import of proteins is mediated by the nuclear pore complexes in the nuclear envelope and requires the presence of a nuclear localization signal (NLS) on the karyophilic protein. In this paper, we describe studies with a monoclonal antibody, Mab E2, which recognizes a class of nuclear pore proteins of 60-76 kDa with a common phosphorylated epitope on rat nuclear envelopes. The Mab Ea-reactive proteins fractionated with the relatively insoluble pore complex-containing component of the envelope and gave a finely punctate pattern of nuclear staining in immunofluorescence assays. The antibody did not bind to any cytosolic proteins. Mab E2 inhibited the interaction of a simian virus 40 large T antigen NLS peptide with a specific 60-kDa NLS-binding protein from rat nuclear envelopes in photoaffinity labeling experiments. The antibody blocked the nuclear import of NLS-albumin conjugates in an in vitro nuclear transport assay with digitonin-permeabilized cells, but did not affect passive diffusion of a small nonnuclear protein, lysozyme, across the pore. Mab E2 may inhibit protein transport by directly interacting with the 60-kDa NLS-binding protein, thereby blocking signal-mediated nuclear import across the nuclear pore complex. (C) 1994 Academic Press, Inc.
Resumo:
The concept of one enzyme-one activity had influenced biochemistry for over half a century. Over 1000 enzymes are now described. Many of them are highly 'specific'. Some of them are crystallized and their three-dimensional structures determined. They range from 12 to 1000 kDa in molecular weight and possess 124 to several hundreds of amino acids. They occur as single polypeptides or multiple-subunit proteins. The active sites are assembled on these by appropriate tertiary folding of the polypeptide chain, or by interaction of the constituent subunits. The substrate is held by the side-chains of a few amino acids at the active site on the surface, occupying a tiny fraction of the total area. What is the bulk of the protein behind the active site doing? Do all proteins have only one function each? Why not a protein have more than one active site on its large surface? Will we discover more than one activity for some proteins? These newer possibilities are emerging and are finding experimental support. Some proteins purified to homogeneity using assay methods for different activities are now recognized to have the same molecular weight and a high degree of homology of amino acid sequence. Obviously they are identical. They represent the phenomenon of one protein-many functions.