99 resultados para Spatial econometrics
Resumo:
Generalized spatial modulation (GSM) is a relatively new modulation scheme for multi-antenna wireless communications. It is quite attractive because of its ability to work with less number of transmit RF chains compared to traditional spatial multiplexing (V-BLAST system). In this paper, we show that, by using an optimum combination of number of transmit antennas (N-t) and number of transmit RF chains (N-rf), GSM can achieve better throughput and/or bit error rate (BER) than spatial multiplexing. First, we quantify the percentage savings in the number of transmit RF chains as well as the percentage increase in the rate achieved in GSM compared to spatial multiplexing; 18.75% savings in number of RF chains and 9.375% increase in rate are possible with 16 transmit antennas and 4-QAM modulation. A bottleneck, however, is the complexity of maximum-likelihood (ML) detection of GSM signals, particularly in large MIMO systems where the number of antennas is large. We address this detection complexity issue next. Specifically, we propose a Gibbs sampling based algorithm suited to detect GSM signals. The proposed algorithm yields impressive BER performance and complexity results. For the same spectral efficiency and number of transmit RF chains, GSM with the proposed detection algorithm achieves better performance than spatial multiplexing with ML detection.
Resumo:
This paper considers the problem of channel estimation at the transmitter in a spatial multiplexing-based Time Division Duplex (TDD) Multiple Input Multiple Output (MIMO) system with perfect CSIR. A novel channel-dependent Reverse Channel Training (RCT) sequence is proposed, using which the transmitter estimates the beamforming vectors for forward link data transmission. This training sequence is designed based on the following two metrics: (i) a capacity lower bound, and (ii) the mean square error in the estimate. The performance of the proposed training scheme is analyzed and is shown to significantly outperform the conventional orthogonal RCT sequence. Also, in the case where the transmitter uses water-filling power allocation for data transmission, a novel RCT sequence is proposed and optimized with respect to the MSE in estimating the transmit covariance matrix.
Resumo:
We present new data on the strength of oceanic lithosphere along the Ninetyeast Ridge (NER) from two independent methods: spectral analysis (Bouguer coherence) using the fan wavelet transform technique, and spatial analysis (flexure inversion) with the convolution method. The two methods provide effective elastic thickness (T-e) patterns that broadly complement each other, and correlate well with known surface structures and regional-scale features. Furthermore, our study presents a new high resolution database on the Moho configuration, which obeys flexural isostasy, and exhibit regional correlations with the T-e variations. A continuous ridge structure with a much lower T-e value than that of normal oceanic lithosphere provides strong support for the hotspot theory. The derived T-e values vary over the northern (higher T-e similar to 10-20 km), central (anomalously low T-e similar to 0-5 km), and southern (low T-e similar to 5 km) segments of the NER. The lack of correlation of the T-e value with the progressive aging of the lithosphere implies differences in thermo-mechanical setting of the crust and underlying mantle in different parts of the NER, again indicating diversity in their evolution. The anomalously low T-e and deeper Moho (similar to 22 km) estimates of the central NER (between 0.5 degrees N and 17 degrees S) are attributed to the interaction of a hotspot with the Wharton spreading ridge that caused significant thermal rejuvenation and hence weakening of the lithosphere. The higher mechanical strength values in the northern NER (north of 0.5 degrees N) may support the idea of off-ridge emplacement and a relatively large plate motion at the time of volcanism. The low T-e and deeper Moho (similar to 22 km) estimates in the southern part (south of 17 degrees S) suggest that the lithosphere was weak and therefore younger at the time of volcanism, and this supports the idea that the southern NER was emplaced on the edge of the Indian plate. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
[1] Evaporative fraction (EF) is a measure of the amount of available energy at the earth surface that is partitioned into latent heat flux. The currently operational thermal sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS) on satellite platforms provide data only at 1000 m, which constraints the spatial resolution of EF estimates. A simple model (disaggregation of evaporative fraction (DEFrac)) based on the observed relationship between EF and the normalized difference vegetation index is proposed to spatially disaggregate EF. The DEFrac model was tested with EF estimated from the triangle method using 113 clear sky data sets from the MODIS sensor aboard Terra and Aqua satellites. Validation was done using the data at four micrometeorological tower sites across varied agro-climatic zones possessing different land cover conditions in India using Bowen ratio energy balance method. The root-mean-square error (RMSE) of EF estimated at 1000 m resolution using the triangle method was 0.09 for all the four sites put together. The RMSE of DEFrac disaggregated EF was 0.09 for 250 m resolution. Two models of input disaggregation were also tried with thermal data sharpened using two thermal sharpening models DisTrad and TsHARP. The RMSE of disaggregated EF was 0.14 for both the input disaggregation models for 250 m resolution. Moreover, spatial analysis of disaggregation was performed using Landsat-7 (Enhanced Thematic Mapper) ETM+ data over four grids in India for contrasted seasons. It was observed that the DEFrac model performed better than the input disaggregation models under cropped conditions while they were marginally similar under non-cropped conditions.
Resumo:
A number of ecosystems can exhibit abrupt shifts between alternative stable states. Because of their important ecological and economic consequences, recent research has focused on devising early warning signals for anticipating such abrupt ecological transitions. In particular, theoretical studies show that changes in spatial characteristics of the system could provide early warnings of approaching transitions. However, the empirical validation of these indicators lag behind their theoretical developments. Here, we summarize a range of currently available spatial early warning signals, suggest potential null models to interpret their trends, and apply them to three simulated spatial data sets of systems undergoing an abrupt transition. In addition to providing a step-by-step methodology for applying these signals to spatial data sets, we propose a statistical toolbox that may be used to help detect approaching transitions in a wide range of spatial data. We hope that our methodology together with the computer codes will stimulate the application and testing of spatial early warning signals on real spatial data.
Resumo:
An attempt has been made to quantify the variability in the seismic activity rate across the whole of India and adjoining areas (0–45°N and 60–105°E) using earthquake database compiled from various sources. Both historical and instrumental data were compiled and the complete catalog of Indian earthquakes till 2010 has been prepared. Region-specific earthquake magnitude scaling relations correlating different magnitude scales were achieved to develop a homogenous earthquake catalog for the region in unified moment magnitude scale. The dependent events (75.3%) in the raw catalog have been removed and the effect of aftershocks on the variation of b value has been quantified. The study area was divided into 2,025 grid points (1°91°) and the spatial variation of the seismicity across the region have been analyzed considering all the events within 300 km radius from each grid point. A significant decrease in seismic b value was seen when declustered catalog was used which illustrates that a larger proportion of dependent events in the earthquake catalog are related to lower magnitude events. A list of 203,448 earth- quakes (including aftershocks and foreshocks) occurred in the region covering the period from 250 B.C. to 2010 A.D. with all available details is uploaded in the website http://www.civil.iisc.ernet.in/*sreevals/resource.htm.
Resumo:
We develop an optical system for generating multiple light sheets. This is enabled by employing a special class of spatial filters in a cylindrical lens geometry. The proposed binary filter placed at the back aperture of the cylindrical lens results in the generation of a periodic transverse pattern extending along the z axis (i.e., multiple light sheets). Experimental results confirm the generation of multiple light sheets of thickness 6.6 mu m with an intersheet spacing of 13.4 mu m. The proposed imaging technique may facilitate three-dimensional imaging in nano-optics, fluorescence microscopy, and nanobiology. (C) 2014 Optical Society of America
Resumo:
Rugged energy landscapes find wide applications in diverse fields ranging from astrophysics to protein folding. We study the dependence of diffusion coefficient (D) of a Brownian particle on the distribution width (epsilon) of randomness in a Gaussian random landscape by simulations and theoretical analysis. We first show that the elegant expression of Zwanzig Proc. Natl. Acad. Sci. U.S.A. 85, 2029 (1988)] for D(epsilon) can be reproduced exactly by using the Rosenfeld diffusion-entropy scaling relation. Our simulations show that Zwanzig's expression overestimates D in an uncorrelated Gaussian random lattice - differing by almost an order of magnitude at moderately high ruggedness. The disparity originates from the presence of ``three-site traps'' (TST) on the landscape - which are formed by the presence of deep minima flanked by high barriers on either side. Using mean first passage time formalism, we derive a general expression for the effective diffusion coefficient in the presence of TST, that quantitatively reproduces the simulation results and which reduces to Zwanzig's form only in the limit of infinite spatial correlation. We construct a continuous Gaussian field with inherent correlation to establish the effect of spatial correlation on random walk. The presence of TSTs at large ruggedness (epsilon >> k(B)T) gives rise to an apparent breakdown of ergodicity of the type often encountered in glassy liquids. (C) 2014 AIP Publishing LLC.
Resumo:
Although uncertainties in material properties have been addressed in the design of flexible pavements, most current modeling techniques assume that pavement layers are homogeneous. The paper addresses the influence of the spatial variability of the resilient moduli of pavement layers by evaluating the effect of the variance and correlation length on the pavement responses to loading. The integration of the spatially varying log-normal random field with the finite-difference method has been achieved through an exponential autocorrelation function. The variation in the correlation length was found to have a marginal effect on the mean values of the critical strains and a noticeable effect on the standard deviation which decreases with decreases in correlation length. This reduction in the variance arises because of the spatial averaging phenomenon over the softer and stiffer zones generated because of spatial variability. The increase in the mean value of critical strains with decreasing correlation length, although minor, illustrates that pavement performance is adversely affected by the presence of spatially varying layers. The study also confirmed that the higher the variability in the pavement layer moduli, introduced through a higher value of coefficient of variation (COV), the higher the variability in the pavement response. The study concludes that ignoring spatial variability by modeling the pavement layers as homogeneous that have very short correlation lengths can result in the underestimation of the critical strains and thus an inaccurate assessment of the pavement performance. (C) 2014 American Society of Civil Engineers.
Resumo:
Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8-50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass density (AGBD in Mgha(-1)) at spatial scales ranging from 5 to 250m (0.025-6.25 ha), and to evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that local spatial variability in AGBD is large for standard plot sizes, averaging 46.3% for replicate 0.1 ha subplots within a single large plot, and 16.6% for 1 ha subplots. AGBD showed weak spatial autocorrelation at distances of 20-400 m, with autocorrelation higher in sites with higher topographic variability and statistically significant in half of the sites. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD leads to a substantial ``dilution'' bias in calibration parameters, a bias that cannot be removed with standard statistical methods. Our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise.
Resumo:
Large-scale estimates of the area of terrestrial surface waters have greatly improved over time, in particular through the development of multi-satellite methodologies, but the generally coarse spatial resolution (tens of kms) of global observations is still inadequate for many ecological applications. The goal of this study is to introduce a new, globally applicable downscaling method and to demonstrate its applicability to derive fine resolution results from coarse global inundation estimates. The downscaling procedure predicts the location of surface water cover with an inundation probability map that was generated by bagged derision trees using globally available topographic and hydrographic information from the SRTM-derived HydroSHEDS database and trained on the wetland extent of the GLC2000 global land cover map. We applied the downscaling technique to the Global Inundation Extent from Multi-Satellites (GIEMS) dataset to produce a new high-resolution inundation map at a pixel size of 15 arc-seconds, termed GIEMS-D15. GIEMS-D15 represents three states of land surface inundation extents: mean annual minimum (total area, 6.5 x 10(6) km(2)), mean annual maximum (12.1 x 10(6) km(2)), and long-term maximum (173 x 10(6) km(2)); the latter depicts the largest surface water area of any global map to date. While the accuracy of GIEMS-D15 reflects distribution errors introduced by the downscaling process as well as errors from the original satellite estimates, overall accuracy is good yet spatially variable. A comparison against regional wetland cover maps generated by independent observations shows that the results adequately represent large floodplains and wetlands. GIEMS-D15 offers a higher resolution delineation of inundated areas than previously available for the assessment of global freshwater resources and the study of large floodplain and wetland ecosystems. The technique of applying inundation probabilities also allows for coupling with coarse-scale hydro-climatological model simulations. (C) 2014 Elsevier Inc All rights reserved.
Resumo:
Using the spatial modulation approach, where only one transmit antenna is active at a time, we propose two transmission schemes for two-way relay channel using physical layer network coding with space time coding using coordinate interleaved orthogonal designs (CIODs). It is shown that using two uncorrelated transmit antennas at the nodes, but using only one RF transmit chain and space-time coding across these antennas can give a better performance without using any extra resources and without increasing the hardware implementation cost and complexity. In the first transmission scheme, two antennas are used only at the relay, adaptive network coding (ANC) is employed at the relay and the relay transmits a CIOD space time block code (STBC). This gives a better performance compared to an existing ANC scheme for two-way relay channel which uses one antenna each at all the three nodes. It is shown that for this scheme at high SNR the average end-to-end symbol error probability (SEP) is upper bounded by twice the SEP of a point-to-point fading channel. In the second transmission scheme, two transmit antennas are used at all the three nodes, CIOD STBCs are transmitted in multiple access and broadcast phases. This scheme provides a diversity order of two for the average end-to-end SEP with an increased decoding complexity of O(M-3) for an arbitrary signal set and O(M-2 root M) for square QAM signal set. Simulation results show that the proposed schemes performs better than the existing ANC schemes under perfect and imperfect channel state information.
Resumo:
We propose a laser interference technique for the fabrication of 3D nano-structures. This is possible with the introduction of specialized spatial filter in a 2 pi cylindrical lens system (consists of two opposing cylindrical lens sharing a common geometrical focus). The spatial filter at the back-aperture of a cylindrical lens gives rise to multiple light-sheet patterns. Two such interfering counter-propagating light-sheet pattern result in periodic 3D nano-pillar structure. This technique overcomes the existing slow point-by-point scanning, and has the ability to pattern selectively over a large volume. The proposed technique allows large-scale fabrication of periodic structures. Computational study shows a field-of-view (patterning volume) of approximately 12: 2mm(3) with the pillar-size of 80 nm and inter-pillar separation of 180 nm. Applications are in nano-waveguides, 3D nano-electronics, photonic crystals, and optical microscopy. (C) 2015 AIP Publishing LLC.
Resumo:
Gamma-band (25-140 Hz) oscillations are ubiquitous in mammalian forebrain structures involved in sensory processing, attention, learning and memory. The optic tectum (01) is the central structure in a midbrain network that participates critically in controlling spatial attention. In this review, we summarize recent advances in characterizing a neural circuit in this midbrain network that generates large amplitude, space-specific, gamma oscillations in the avian OT, both in vivo and in vitro. We describe key physiological and pharmacological mechanisms that produce and regulate the structure of these oscillations. The extensive similarities between midbrain gamma oscillations in birds and those in the neocortex and hippocampus of mammals, offer important insights into the functional significance of a midbrain gamma oscillatory code.