280 resultados para Solar Aspect Angle
Resumo:
The near flow field of small aspect ratio elliptic turbulent free jets (issuing from nozzle and orifice) was experimentally studied using a 2D PIV. Two point velocity correlations in these jets revealed the extent and orientation of the large scale structures in the major and minor planes. The spatial filtering of the instantaneous velocity field using Gaussian convolution kernel shows that while a single large vortex ring circumscribing the jet seems to be present at the exit of nozzle, the orifice jet exhibited a number of smaller vortex ring pairs close to jet exit. The smaller length scale observed in the case of the orifice jet is representative of the smaller azimuthal vortex rings that generate axial vortex field as they are convected. This results in the axis-switching in the case of orifice jet and may have a mechanism different from the self induction process as observed in the case of contoured nozzle jet flow.
Resumo:
Since a majority of residential and industrial building hot water needs are around 50 degrees C, an integrated solar water heater could provide a bulk source that blends collection and storage into one unit. This paper describes the design, construction and performance test results of one such water-heating device. The test unit has an absorber area of 1.3 m(2) and can hold 1701 of water, of which extractable volume per day is 1001. Its performance was evaluated under various typical operating conditions. Every morning at about 7:00 a.m., 1001 of hot water were drawn from the sump and replaced with cold water from the mains. Although, during most of the days, the peak temperatures of water obtained are between 50 and 60 degrees C, the next morning temperatures were lower at 45-50 degrees C. Daytime collection efficiencies of about 60% and overall efficiencies of about 40% were obtained. Tests were conducted with and without stratification. Night radiation losses were reduced by use of a screen insulation.
Resumo:
An alternative pulse scheme which simplifies and improves the recently proposed P.E.COSY experiment is suggested for the retention of connected or unconnected transitions in a coupled spin system. An important feature of the proposed pulse scheme is the improved phase characteristics of the diagonal peaks. A comparison of various experiments designed for this purpose, namely COSY-45, E.COSY, P.E.COSY and the present scheme (A.E.COSY), is also presented. The suppression of unconnected transitions and the measurement of scalar coupling constants and their relative signs are illustrated from A.E.COSY spectra of 2,3-dibromopropionic acid and 2-(2-thienyl)pyridine.
Resumo:
The peaking of most oil reserves and impending climate change are critically driving the adoption of solar photovoltaic's (PV) as a sustainable renewable and eco-friendly alternative. Ongoing material research has yet to find a breakthrough in significantly raising the conversion efficiency of commercial PV modules. The installation of PV systems for optimum yield is primarily dictated by its geographic location (latitude and available solar insolation) and installation design (tilt, orientation and altitude) to maximize solar exposure. However, once these parameters have been addressed appropriately, there are other depending factors that arise in determining the system performance (efficiency and output). Dust is the lesser acknowledged factor that significantly influences the performance of the PV installations. This paper provides an appraisal on the current status of research in studying the impact of dust on PV system performance and identifies challenges to further pertinent research. A framework to understand the various factors that govern the settling/assimilation of dust and likely mitigation measures have been discussed in this paper. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper proposes a differential evolution based method of improving the performance of conventional guidance laws at high heading errors, without resorting to techniques from optimal control theory, which are complicated and suffer from several limitations. The basic guidance law is augmented with a term that is a polynomial function of the heading error. The values of the coefficients of the polynomial are found by applying the differential evolution algorithm. The results are compared with the basic guidance law, and the all-aspect proportional navigation laws in the literature. A scheme for online implementation of the proposed law for application in practice is also given. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper proposes a hybrid solar cooking system where the solar energy is transported to the kitchen. The thermal energy source is used to supplement the Liquefied Petroleum Gas (LPG) that is in common use in kitchens. Solar energy is transferred to the kitchen by means of a circulating fluid. Energy collected from sun is maximized by changing the flow rate dynamically. This paper proposes a concept of maximum power point tracking (MPPT) for the solar thermal collector. The diameter of the pipe is selected to optimize the overall energy transfer. Design and sizing of different components of the system are explained. Concept of MPPT is validated with simulation and experimental results. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Three types of conventional solar air heater are designed such that their heat absorbing areas and the pressure drops across them are equal for equal air mass flow rates per unit collector area. The results of thermal performance tests conducted simultaneously on these collectors, under the same environmental conditions, are presented.
Resumo:
A reduction in the heat losses from the top of the gas holder of a biogas plant has been achieved by the simple device of a transparent cover. The heat losses thus prevented have been deployed to heat a water pond formed on the roof of the gas holder. This solar-heated water is mixed with the organic input for ‘ hot-charging ’ of the biogas plant. A thermal analysis of such a solar water-heater ‘ piggy-backing ’ on the gas holder of a biogas plant has been carried out.To test whether the advantages indicated by the thermal analysis can be realised in practice, a biogas plant of the ASTRA design was modified to incorporate a roof-top solar water-heater. The operation of such a modified plant, even under ‘ worst case ’ onditions, shows a significant improvement in the gas yield compared to the unmodified plant. Hence, the innovation reported here may lead to drastic reductions in the sizes and therefore costs of biogas plants. By making the transparent cover assume a tent-shape, the roof-top solar heater can serve the additional function of a solar still to yield distilled water. The biogas plant-cum-solar water-heater-cum-solar still described here is an example of a spatially integrated hybrid device which is extremely cost-effective.
Resumo:
A brief survey of the historical development of a photoelectrochemical solar cell is given. The principle and future of solar chargeable battery is compared with a wet and a dry type photovoltaic cell. A solar chargeable battery, with or without a membrane and with an aqueous solution or with solid-state electrolytes is discussed. A new unique type of configuration “Sharon-Schottky” junction solar cell is described which can be used either as a charger for any secondary batteries or could be used for photoelectrolysis of water. All these configurations and their relative merits are discussed. A review on the various semiconductors and types of solar chargeable batteries is made. Finally, a conclusion is drawn for future direction of research for developing an economically viable photoelectrochemical (PEC) solar cell based on either the principle of a solar charger (to charge a Ni---Cd battery or lead—acid battery) and/or solar chargeable battery with or without without a membrane. Some new innovative ideas for the preparation of materials is discussed. The entire discussion is geared towards answering a relevant question: what has gone wrong to result in the stagnation and failure in commercialization of a PEC based solar cell?
Resumo:
Mechanical joints in composites can be tailored to achieve improved performance and better life by appropriately selecting the laminate parameters. In order to gain the best advantage of this possibility of tailoring the laminate, it is necessary to understand the influence of laminate parameters on the behaviour of joints in composites. Most of the earlier studies in this direction were based on simplified assumptions regarding load transfer at the pin-plate interface and such studies were only carried out on orthotropic and quasi-isotropic laminates. In the present study, a more rigorous analysis is carried out to study pin joints in laminates with anisotropic properties. Two types of laminates with (0/ + ?4/90)s and (0/ ± ?2/90)s layups made out of graphite epoxy T300/5208 material system are considered. The analysis mainly concentrates on clearance fit in which the pin is of smaller diameter compared to the hole. The main aspect of the analysis of pin joints is the changing contact between the pin and the plate with increasing load levels. The analysis is carried out by an iterative finite element technique and a computationally efficient routine is developed for this purpose. Numerical studies indicate that the location and magnitude of the peak stresses along the hole boundary are functions of fibre angle and the overall anisotropic properties. It is also shown that the conventional assumption of cosine distribution for the contact pressure between pin and the plate in the analysis lead to underestimation of bearing failure load and overestimation of shear and tensile failure loads in typical (0/905)s cross-ply laminates.
Resumo:
Theoretical calculations of the geminal carbonyl-13C- proton coupling constant, 2J(C′H), in α-amino acids have been carried out using Dirac Vector model and Penney-Dirac bond order formulations. The results indicate that the couplings are dependent on the backbone torsion angle psi (ψ) of the amino acid residues in peptides. The meagre available experimental data seem to support the theoretical findings.
Resumo:
The influence of gold (similar to 35 nm diameter) as well as ReO3 (similar to 17 nm diameter) nanoparticles placed atop silicon photovoltaic devices on absorption and photocurrent generation has been investigated. The nanoparticles improve the power transmission into the semiconductor and consequently, the photocurrent response at wavelengths corresponding to plasmon absorption. An increase in short circuit current up to 4.5% under simulated solar irradiation was observed with the ReO3 nanoparticles, while the gold nanoparticles showed enhancements up to 6.5%. The increase in photocurrent is observed at wavelengths corresponding to the maxima in the surface plasmon resonance absorption spectra. (C) 2010 The Japan Society of Applied Physics