104 resultados para Soft lens


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Realistic and realtime computational simulation of soft biological organs (e.g., liver, kidney) is necessary when one tries to build a quality surgical simulator that can simulate surgical procedures involving these organs. Since the realistic simulation of these soft biological organs should account for both nonlinear material behavior and large deformation, achieving realistic simulations in realtime using continuum mechanics based numerical techniques necessitates the use of a supercomputer or a high end computer cluster which are costly. Hence there is a need to employ soft computing techniques like Support Vector Machines (SVMs) which can do function approximation, and hence could achieve physically realistic simulations in realtime by making use of just a desktop computer. Present work tries to simulate a pig liver in realtime. Liver is assumed to be homogeneous, isotropic, and hyperelastic. Hyperelastic material constants are taken from the literature. An SVM is employed to achieve realistic simulations in realtime, using just a desktop computer. The code for the SVM is obtained from [1]. The SVM is trained using the dataset generated by performing hyperelastic analyses on the liver geometry, using the commercial finite element software package ANSYS. The methodology followed in the present work closely follows the one followed in [2] except that [2] uses Artificial Neural Networks (ANNs) while the present work uses SVMs to achieve realistic simulations in realtime. Results indicate the speed and accuracy that is obtained by employing the SVM for the targeted realistic and realtime simulation of the liver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using the axisymmetric quasi-lower bound finite-element limit analysis, the bearing capacity factors N-c(p) and N-gamma q(p) have been computed for axially loaded piles, with the shaft embedded in a fully cohesive soil medium and the tip placed over cohesive frictional soil strata. The results were obtained for various combinations of L/D, phi(l), and c(l)/c(u); the subscripts l and u refer to lower and upper soil strata, respectively. The factors N-c(p) and N-gamma q(p) increase continuously with increases in L/D and phi(l); the rate of increase of N-c(p) and N-gamma q(p) with L/D, however, decreases with an increase in L/D. For c(l)/c(u) > 100, the factor N-c(p) hardly depends on L/D.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper reports exchange-spring soft and hard ferrite nanocomposites synthesized by chemical co-precipitation with or without the application of ultrasonic vibration. The composites contained BaFe12O19 as the hard phase and CoFe2O4/MgFe2O4 as the soft phase. X-ray diffraction patterns of the samples in the optimum calcined condition indicated the presence of soft ferrites as face-centred cubic (fcc) and hard ferrites as hexagonal close packed (hcp) structure respectively. Temperature dependence of magnetization in the range of 20-700 degrees C demonstrated distinct presence of soft and hard ferrites as magnetic phases which are characterized by wide difference in magnetic anisotropy and coercivity. Exchange-spring mechanism led these nanocomposite systems to exchange-coupled, which ultimately produced convex hysteresis loops characteristic of a single-phase permanent magnet. Fairly high value of coercivity and maximum energy product were observed for the samples in the optimum calcined conditions with a maximum applied field of 1600 kA/m (2 T).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dynamical instability is observed in experimental studies on micro-channels of rectangular cross-section with smallest dimension 100 and 160 mu m in which one of the walls is made of soft gel. There is a spontaneous transition from an ordered, laminar flow to a chaotic and highly mixed flow state when the Reynolds number increases beyond a critical value. The critical Reynolds number, which decreases as the elasticity modulus of the soft wall is reduced, is as low as 200 for the softest wall used here (in contrast to 1200 for a rigid-walled channel) The instability onset is observed by the breakup of a dye-stream introduced in the centre of the micro-channel, as well as the onset of wall oscillations due to laser scattering from fluorescent beads embedded in the wall of the channel. The mixing time across a channel of width 1.5 mm, measured by dye-stream and outlet conductance experiments, is smaller by a factor of 10(5) than that for a laminar flow. The increased mixing rate comes at very little cost, because the pressure drop (energy requirement to drive the flow) increases continuously and modestly at transition. The deformed shape is reconstructed numerically, and computational fluid dynamics (CFD) simulations are carried out to obtain the pressure gradient and the velocity fields for different flow rates. The pressure difference across the channel predicted by simulations is in agreement with the experiments (within experimental errors) for flow rates where the dye stream is laminar, but the experimental pressure difference is higher than the simulation prediction after dye-stream breakup. A linear stability analysis is carried out using the parallel-flow approximation, in which the wall is modelled as a neo-Hookean elastic solid, and the simulation results for the mean velocity and pressure gradient from the CFD simulations are used as inputs. The stability analysis accurately predicts the Reynolds number (based on flow rate) at which an instability is observed in the dye stream, and it also predicts that the instability first takes place at the downstream converging section of the channel, and not at the upstream diverging section. The stability analysis also indicates that the destabilization is due to the modification of the flow and the local pressure gradient due to the wall deformation; if we assume a parabolic velocity profile with the pressure gradient given by the plane Poiseuille law, the flow is always found to be stable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an explicit computable integral solution of the electric field generated at the focal region of a cylindrical lens. This representation is based on vectorial diffraction theory and further enables the computation of the system point spread function of a cylindrical lens. It is assumed that there is no back-scattering and the contribution from the evanescent field is negligible. Stationary phase approximation along with the Fresnel transmission coefficients are employed for evaluating the polarization dependent electric field components. Studies were carried out to determine the polarization effects and to calculate the system resolution. The effect of s -, p - and randomly polarized light is studied on the fixed sample (electric dipole is fixed in space). Proposed approach allows better understanding of electric field effects at the focus of a cylindrical aplanatic system. This opens up future developments in the field of fluorescence microscopy and optical imaging. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review summarizes theoretical progress in the field of active matter, placing it in the context of recent experiments. This approach offers a unified framework for the mechanical and statistical properties of living matter: biofilaments and molecular motors in vitro or in vivo, collections of motile microorganisms, animal flocks, and chemical or mechanical imitations. A major goal of this review is to integrate several approaches proposed in the literature, from semimicroscopic to phenomenological. In particular, first considered are ``dry'' systems, defined as those where momentum is not conserved due to friction with a substrate or an embedding porous medium. The differences and similarities between two types of orientationally ordered states, the nematic and the polar, are clarified. Next, the active hydrodynamics of suspensions or ``wet'' systems is discussed and the relation with and difference from the dry case, as well as various large-scale instabilities of these nonequilibrium states of matter, are highlighted. Further highlighted are various large-scale instabilities of these nonequilibrium states of matter. Various semimicroscopic derivations of the continuum theory are discussed and connected, highlighting the unifying and generic nature of the continuum model. Throughout the review, the experimental relevance of these theories for describing bacterial swarms and suspensions, the cytoskeleton of living cells, and vibrated granular material is discussed. Promising extensions toward greater realism in specific contexts from cell biology to animal behavior are suggested, and remarks are given on some exotic active-matter analogs. Last, the outlook for a quantitative understanding of active matter, through the interplay of detailed theory with controlled experiments on simplified systems, with living or artificial constituents, is summarized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: We highlight an unrecognized physiological role for the Greek key motif, an evolutionarily conserved super-secondary structural topology of the beta gamma-crystallins. These proteins constitute the bulk of the human eye lens, packed at very high concentrations in a compact, globular, short-range order, generating transparency. Congenital cataract (affecting 400,000 newborns yearly worldwide), associated with 54 mutations in beta gamma-crystallins, occurs in two major phenotypes nuclear cataract, which blocks the central visual axis, hampering the development of the growing eye and demanding earliest intervention, and the milder peripheral progressive cataract where surgery can wait. In order to understand this phenotypic dichotomy at the molecular level, we have studied the structural and aggregation features of representative mutations. Methods: Wild type and several representative mutant proteins were cloned, expressed and purified and their secondary and tertiary structural details, as well as structural stability, were compared in solution, using spectroscopy. Their tendencies to aggregate in vitro and in cellulo were also compared. In addition, we analyzed their structural differences by molecular modeling in silico. Results: Based on their properties, mutants are seen to fall into two classes. Mutants A36P, L45PL54P, R140X, and G165fs display lowered solubility and structural stability, expose several buried residues to the surface, aggregate in vitro and in cellulo, and disturb/distort the Greek key motif. And they are associated with nuclear cataract. In contrast, mutants P24T and R77S, associated with peripheral cataract, behave quite similar to the wild type molecule, and do not affect the Greek key topology. Conclusion: When a mutation distorts even one of the four Greek key motifs, the protein readily self-aggregates and precipitates, consistent with the phenotype of nuclear cataract, while mutations not affecting the motif display `native state aggregation', leading to peripheral cataract, thus offering a protein structural rationale for the cataract phenotypic dichotomy ``distort motif, lose central vision''.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geotextiles and geogrids have been in use for several decades in variety of geo-structure applications including foundation of embankments, retaining walls, pavements. Geocells is one such variant in geosynthetic reinforcement of recent years, which provides a three dimensional confinement to the infill material. Although extensive research has been carried on geocell reinforced sand, clay and layered soil subgrades, limited research has been reported on the aggregates/ballast reinforced with geocells. This paper presents the behavior of a railway sleeper subjected to monotonic loading on geocell reinforced aggregates, of size ranging from 20 to 75 mm, overlying soft clay subgrades. Series of tests were conducted in a steel test tank of dimensions 700 mm x 300 mm x 700 mm. In addition to the laboratory model tests, numerical simulations were performed using a finite difference code to predict the behavior of geocell reinforced ballast. The results from numerical simulations were compared with the experimental data. The numerical and experimental results manifested the importance that the geocell reinforcement has a significant effect on the ballast behaviour. The results depicted that the stiffness of underlying soft clay subgrade has a significant influence on the behavior of the geocell-aggregate composite material in redistributing the loading system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have shown earlier [1] that these PGNPs resemble star polymers or spherical brushes in terms of their morphology in the melt. However, these particles show dynamics in melt which is quite different from other soft colloidal particles. Since most of the work on soft colloidal particles have been performed in solutions we have now explored the phase behavior of the PGNPs in good solvent using microscopic structural and dynamical measurements on binary mixtures of homopolymers and soft colloids consisting of polymer grafted nanoparticles. We observe anomalous structural and dynamical phase transitions of these binary mixtures, including appearance of spontaneous orientational alignment and logarithmic structural relaxations, as a function of added homopolymers of different molecular weights. Our experiments points to the possibility of exploiting the phase space in density and homopolymer size, of such hybrid systems, to create new materials with unique properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide experimental evidence supporting the vectorial theory for determining electric field at and near the geometrical focus of a cylindrical lens. This theory provides precise distribution of field and its polarization effects. Experimental results show a close match (approximate to 95% using (2)-test) with the simulation results (obtained using vectorial theory). Light-sheet generated both at low and high NA cylindrical lens shows the importance of vectorial theory for further development of light-sheet techniques. Potential applications are in planar imaging systems (such as, SPIM, IML-SPIM, imaging cytometry) and spectroscopy. Microsc. Res. Tech. 77:105-109, 2014. (c) 2014 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present direct experimental signatures of a nonequilibrium phase transition associated with the yield point of a prototypical soft solid-a binary colloidal glass. By simultaneously quantifying single-particle dynamics and bulk mechanical response, we identified the threshold for the onset of irreversibility with the yield strain. We extracted the relaxation time from the transient behavior of the loss modulus and found that it diverges in the vicinity of the yield strain. This critical slowing down is accompanied by a growing correlation length associated with the size of regions of high Debye-Waller factor, which are precursors to yield events in glasses. Our results affirm that the paradigm of nonequilibrium critical phenomena is instrumental in achieving a holistic understanding of yielding in soft solids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report addresses the assessment of variation in elastic property of soft biological tissues non-invasively using laser speckle contrast measurement. The experimental as well as the numerical (Monte-Carlo simulation) studies are carried out. In this an intense acoustic burst of ultrasound (an acoustic pulse with high power within standard safety limits), instead of continuous wave, is employed to induce large modulation of the tissue materials in the ultrasound insonified region of interest (ROI) and it results to enhance the strength of the ultrasound modulated optical signal in ultrasound modulated optical tomography (UMOT) system. The intensity fluctuation of speckle patterns formed by interference of light scattered (while traversing through tissue medium) is characterized by the motion of scattering sites. The displacement of scattering particles is inversely related to the elastic property of the tissue. We study the feasibility of laser speckle contrast analysis (LSCA) technique to reconstruct a map of the elastic property of a soft tissue-mimicking phantom. We employ source synchronized parallel speckle detection scheme to (experimentally) measure the speckle contrast from the light traversing through ultrasound (US) insonified tissue-mimicking phantom. The measured relative image contrast (the ratio of the difference of the maximum and the minimum values to the maximum value) for intense acoustic burst is 86.44 % in comparison to 67.28 % for continuous wave excitation of ultrasound. We also present 1-D and 2-D image of speckle contrast which is the representative of elastic property distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-component super-hydrogelation triggered by the acid-base interaction of a L-histidine appended pyrenyl derivative (PyHis) and phthalic acid (PA) was reported. The use of isomeric isophthalic or terephthalic acid or other comparable acids in place of PA does not lead to salt formation and therefore hydrogelation is not observed. Excimer formation of the pyrenyl unit has not been detected although the PyHis : PA = 1: 1 system undergoes extensive self-assembly in aqueous solution. The synergistic effect of intermolecular H-bonding forces, pi-pi stacking, electrostatic interactions, etc. is found to be responsible for robust hydrogel formation. Development of chiral supramotecular assemblies has been verified through circular dichroism spectroscopy. Morphological investigations involving the PyHis : PA = 1: 1 system show vesicular nano-structures with a definite bilayer width at relatively low concentrations. The latter fuses to construct coiled-coil left-handed helical fibers upon increase in the concentrations of the gelators. The intertwining of the resultant helical fibers eventually results in hydrogel formation. The probable bilayer packing in the self-assembled structures has been probed using X-ray diffraction (XRD) studies and lanthanide sensitization, which suggests that the polar imidazolium hydrogen phthalate unit of the gelator forms the head group and faces the hydrophilic water environment while the hydrophobic pyrenyl units sit inside the hydrophobic core of the bilayer. The hydrogel exhibits multi-stimuli responsiveness including thixotropic behavior. In addition, shape-persistent as well as rapid self-healing behaviour of the hydrogel was established. Furthermore load-bearing characteristics of the hydrogel have also been demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soft-decision multiple-symbol differential sphere decoding (MSDSD) is proposed for orthogonal frequency-division multiplexing (OFDM)-aided differential space-time shift keying (DSTSK)-aided transmission over frequency-selective channels. Specifically, the DSTSK signaling blocks are generated by the channel-encoded source information and the space-time (ST) blocks are appropriately mapped to a number of OFDM subcarriers. After OFDM demodulation, the DSTSK signal is noncoherently detected by our soft-decision MSDSD detector. A novel soft-decision MSDSD detector is designed, and the associated decision rule is derived for the DSTSK scheme. Our simulation results demonstrate that an SNR reduction of 2 dB is achieved by the proposed scheme using an MSDSD window size of N-w = 4 over the conventional soft-decision-aided differential detection benchmarker, while communicating over dispersive channels and dispensing with channel estimation (CE).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A `powder-poling' technique was developed to study electric field induced structural transformations in ferroelectrics exhibiting a morphotropic phase boundary (MPB). The technique was employed on soft PZT exhibiting a large longitudinal piezoelectric response (d(33) similar to 650 pCN(-1)). It was found that electric poling brings about a considerable degree of irreversible tetragonal to monoclinic transformation. The same transformation was achieved after subjecting the specimen to mechanical stress, which suggests an equivalence of stress and electric field with regard to the structural mechanism in MPB compositions. The electric field induced structural transformation was also found to be accompanied by a decrease in the spatial coherence of polarization.