103 resultados para Sheep - Artificial insemination - Experimental studies
Resumo:
The role of a computer emerged from modeling and analyzing concepts (ideas) to generate concepts. Research into methods for supporting conceptual design using automated synthesis had attracted much attention in the past decades. To find out how designers synthesize solution concepts for multi-state mechanical devices, ten experimental studies were conducted. Observations from these empirical studies would be used as the basis to develop knowledge involved in the multi-state design synthesis process. In this paper, we propose a computational representation for expressing the multi-state design task and for enumerating multi-state behaviors of kinematic pairs and mechanisms. This computational representation would be used to formulate computational methods for the synthesis process to develop a system for supporting design synthesis of multiple state mechanical devices by generating a comprehensive variety of solution alternatives.
Resumo:
Automated synthesis of mechanical designs is an important step towards the development of an intelligent CAD system. Research into methods for supporting conceptual design using automated synthesis has attracted much attention in the past decades. In our research, ten experimental studies are conducted to find out how designers synthesize solution concepts for multi-state mechanical devices. The designers are asked to think aloud, while carrying out the synthesis. These design synthesis processes are video recorded. It has been found that modification of kinematic pairs and mechanisms is the major activity carried out by all the designers. This paper presents an analysis of these synthesis processes using configuration space and topology graph to identify and classify the types of modifications that take place. Understanding of these modification processes and the context in which they happened is crucial to develop a system for supporting design synthesis of multiple state mechanical devices that is capable of creating a comprehensive variety of solution alternatives.
Resumo:
Several experimental studies have shown that fracture surfaces in brittle metallic glasses (MGs) generally exhibit nanoscale corrugations which may be attributed to the nucleation and coalescence of nanovoids during crack propagation. Recent atomistic simulations suggest that this phenomenon is due to large spatial fluctuations in material properties in a brittle MG, which leads to void nucleation in regions of low atomic density and then catastrophic fracture through void coalescence. To explain this behavior, we propose a model of a heterogeneous solid containing a distribution of weak zones to represent a brittle MG. Plane strain continuum finite element analysis of cavitation in such an elastic-plastic solid is performed with the weak zones idealized as periodically distributed regions having lower yield strength than the background material. It is found that the presence of weak zones can significantly reduce the critical hydrostatic stress for the onset of cavitation which is controlled uniquely by the local yield properties of these zones. Also, the presence of weak zones diminishes the sensitivity of the cavitation stress to the volume fraction of a preexisting void. These results provide plausible explanations for the observations reported in recent atomistic simulations of brittle MGs. An analytical solution for a composite, incompressible elastic-plastic solid with a weak inner core is used to investigate the effect of volume fraction and yield strength of the core on the nature of cavitation bifurcation. It is shown that snap-cavitation may occur, giving rise to sudden formation of voids with finite size, which does not happen in a homogeneous plastic solid. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A dynamical instability is observed in experimental studies on micro-channels of rectangular cross-section with smallest dimension 100 and 160 mu m in which one of the walls is made of soft gel. There is a spontaneous transition from an ordered, laminar flow to a chaotic and highly mixed flow state when the Reynolds number increases beyond a critical value. The critical Reynolds number, which decreases as the elasticity modulus of the soft wall is reduced, is as low as 200 for the softest wall used here (in contrast to 1200 for a rigid-walled channel) The instability onset is observed by the breakup of a dye-stream introduced in the centre of the micro-channel, as well as the onset of wall oscillations due to laser scattering from fluorescent beads embedded in the wall of the channel. The mixing time across a channel of width 1.5 mm, measured by dye-stream and outlet conductance experiments, is smaller by a factor of 10(5) than that for a laminar flow. The increased mixing rate comes at very little cost, because the pressure drop (energy requirement to drive the flow) increases continuously and modestly at transition. The deformed shape is reconstructed numerically, and computational fluid dynamics (CFD) simulations are carried out to obtain the pressure gradient and the velocity fields for different flow rates. The pressure difference across the channel predicted by simulations is in agreement with the experiments (within experimental errors) for flow rates where the dye stream is laminar, but the experimental pressure difference is higher than the simulation prediction after dye-stream breakup. A linear stability analysis is carried out using the parallel-flow approximation, in which the wall is modelled as a neo-Hookean elastic solid, and the simulation results for the mean velocity and pressure gradient from the CFD simulations are used as inputs. The stability analysis accurately predicts the Reynolds number (based on flow rate) at which an instability is observed in the dye stream, and it also predicts that the instability first takes place at the downstream converging section of the channel, and not at the upstream diverging section. The stability analysis also indicates that the destabilization is due to the modification of the flow and the local pressure gradient due to the wall deformation; if we assume a parabolic velocity profile with the pressure gradient given by the plane Poiseuille law, the flow is always found to be stable.
Resumo:
The fabrication of tissue engineering scaffolds necessitates amalgamation of a multitude of attributes including a desirable porosity to encourage vascular invasion, desired surface chemistry for controlled deposition of calcium phosphate-based mineral as well as ability to support attachment, proliferation, and differentiation of lineage specific progenitor cells. Scaffold fabrication often includes additional surface treatments to bring about desired changes in the surface chemistry. In this perspective, this review documents the important natural and synthetic scaffolds fabricated for bone tissue engineering applications in tandem with the surface treatment techniques to maneuver the biocompatibility of engineered scaffolds. This review begins with a discussion on the fundamental concepts related to biocompatibility as well as the characteristics of the biological micro-environment. The primary focus is to discuss the effects of surface micro/nano patterning on the modulation of bone cell response. Apart from reviewing a host of experimental studies reporting the functionality of osteoblast-like bone cells and stem cells on surface modified or textured bioceramic/biopolymer scaffolds, theoretical insights to predict cell behavior on a scaffold with different topographical features are also briefly analyzed.
Resumo:
A Frictionally constrained condition implies dependence of friction force on tangential displacement amplitude. The condition may occur due to chemical, physical, and/or mechanical interaction between the contacting surfaces. The condition, sometimes also referred to as the presliding condition or partial slip condition, is characterized under fretting. Under such conditions, various experimental studies indicate the existence of two distinguishable regions, that is, stick region and slip region. In the present study, frictionally constrained conditions are identified and the evolutions of stick-slip regions are investigated in detail. Investigations have been performed on self-mated stainless steel and chromium carbide coated surfaces mated against stainless steel, under both vacuum and ambient conditions. Contact conditions prevailing at the contact interface were identified based on the mechanical responses and were correlated with the surface damage observed. Surface degradation has been observed in the form of microcracks and material transfer. Detailed numerical analysis has also been performed in order to understand the energy dissipation and the damage mode involved in the surface or subsurface damage. It has been observed that under frictionally constrained conditions, the occurrence of annular slip features are mainly due to the junction growth, resulting from elastic-plastic deformation at the contact interface. Ratcheting has been observed as the governing damage mode under cyclic tangential loading condition.
Resumo:
This paper presents the case history of the construction of a 3 m high embankment on the geocell foundation over the soft settled red mud. Red mud is a waste product from the Bayer process of Aluminum industry. Geotechnical problems of the site, the design of the geocell foundation based on experimental investigation and the construction sequences of the geocell foundations in the field are discussed in the paper. Based on the experimental studies, an analytical model was also developed to estimate the load carrying capacity of the soft clay bed reinforced with geocell and combination of geocell and geogrid. The results of the experimental and analytical studies revealed that the use of combination of geocell and the geogrid is always beneficial than using the geocell alone. Hence, the combination of geocell and geogrid was recommended to stabilize the embankment base. The reported embankment is located in Lanjigharh (Orissa) in India. Construction of the embankment on the geocell foundation has already been completed. The constructed embankmenthas already sustained two monsoon rains without any cracks and seepage. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Theoretical studies exist to compute the atomic arrangement in gold nanowires and the influence on their electronic behavior with decreasing diameter. Experimental studies, e.g., by transmission electron microscopy, on chemically synthesized ultrafine wires are however lacking owing to the unavailability of suitable protocols for sample preparation and the stability of the wires under electron beam irradiation. In this work, we present an atomic scale structural investigation on quantum single crystalline gold nanowires of 2 nm diameter, chemically prepared on a carbon film grid. Using low dose aberration-corrected high resolution (S)TEM, we observe an inhomogeneous strain distribution in the crystal, largely concentrated at the twin boundaries and the surface along with the presence of facets and surface steps leading to a noncircular cross section of the wires. These structural aspects are critical inputs needed to determine their unique electronic character and their potential as a suitable catalyst material. Furthermore, electron-beam-induced structural changes at the atomic scale, having implications on their mechanical behavior and their suitability as interconnects, are discussed.
Resumo:
Chiral metamaterials can have diverse technological applications, such as engineering strongly twisted local electromagnetic fields for sensitive detection of chiral molecules, negative indices of refraction, broadband circular polarization devices, and many more. These are commonly achieved by arranging a group of noble-metal nanoparticles in a chiral geometry, which, for example, can be a helix, whose chiroptical response originates in the dynamic electromagnetic interactions between the localized plasmon modes of the individual nanoparticles. A key question relevant to the chiroptical response of such materials is the role of plasmon interactions as the constituent particles are brought closer, which is investigated in this paper through theoretical and experimental studies. The results of our theoretical analysis, when the particles are brought in close proximity are dramatic, showing a large red shift and enhancement of the spectral width and a near-exponential rise in the strength of the chiroptical response. These predictions were further confirmed with experimental studies of gold and silver nanoparticles arranged on a helical template, where the role of particle separation could be investigated in a systematic manner. The ``optical chirality'' of the electromagnetic fields in the vicinity of the nanoparticles was estimated to be orders of magnitude larger than what could be achieved in all other nanoplasmonic geometries considered so far, implying the suitability of the experimental system for sensitive detection of chiral molecules.
Resumo:
We study the Feshbach resonance of spin-1/2 particles in a uniform synthetic non-Abelian gauge field that produces spin-orbit coupling and constant spin potentials. We develop a renormalizable quantum field theory including the closed-channel boson which engenders the resonance. We show that the gauge field shifts the Feshbach field where the low-energy scattering length diverges. In addition the Feshbach field is shown to depend on the center-of-mass momentum of the particles. For high-symmetry gauge fields which produce a Rashba spin coupling, we show that the system supports two bound states over a regime of magnetic fields when the background scattering length is negative and the resonance width is comparable to the energy scale of the spin-orbit coupling. We discuss interesting consequences useful for future theoretical and experimental studies, even while our predictions are in agreement with recent experiments.
Resumo:
Two new 2-(2-aminophenyl)benzimidazole-based HSO4- ion selective receptors, 6-(4-nitrophenyl)-5,6-dihydrobenzo4,5]imidazo1,2-c]quinazoline (L1H) and 6-(4-methoxyphenyl)-5,6-dihydrobenzo4,5]imidazo1,2-c] quinazoline (L2H), and their 1 : 1 molecular complexes with HSO4- were prepared in a facile synthetic method and characterized by physicochemical and spectroscopic techniques along with the detailed structural analysis of L1H by single crystal X-ray crystallography. Both receptors (L1H and L2H) behave as highly selective chemosensor for HSO4- ions at biological pH in ethanol-water HEPES buffer (1/5) (v/v) medium over other anions such as F-, Cl-, Br-, I-, AcO-, H2PO4-, N-3(-) and ClO4-. Theoretical and experimental studies showed that the emission efficiency of the receptors (L1H and L2H) was tuned successfully through single point to ratiometric detection by employing the substituent effects. Using 3 sigma method the LOD for HSO4- ions were found to be 18.08 nM and 14.11 nM for L1H and L2H, respectively, within a very short responsive time (15-20 s) in 100 mM HEPES buffer (ethanol-water: 1/5, v/v). Comparison of the utility of the probes (L1H and L2H) as biomarkers for the detection of intracellular HSO4- ions concentrations under a fluorescence microscope has also been included and both probes showed no cytotoxic effect.
Resumo:
CONSPECTUS: The halogen bond is an attractive interaction in which an electrophilic halogen atom approaches a negatively polarized species. Short halogen atom contacts in crystals have been known for around 50 years. Such contacts are found in two varieties: type I, which is symmetrical, and type II, which is bent. Both are influenced by geometric and chemical considerations. Our research group has been using halogen atom interactions as design elements in crystal engineering, for nearly 30 years. These interactions include halogen center dot center dot center dot halogen interactions (X center dot center dot center dot X) and halogen center dot center dot center dot heteroatom interactions (X center dot center dot center dot B). Many X center dot center dot center dot X and almost all X center dot center dot center dot B contacts can be classified as halogen bonds. In this Account, we illustrate examples of crystal engineering where one can build up from previous knowledge with a focus that is provided by the modern definition of the halogen bond. We also comment on the similarities and differences between halogen bonds and hydrogen bonds. These interactions are similar because the protagonist atoms halogen and hydrogen are both electrophilic in nature. The interactions are distinctive because the size of a halogen atom is of consequence when compared with the atomic sizes of, for example, C, N, and O, unlike that of a hydrogen atom. Conclusions may be drawn pertaining to the nature of X center dot center dot center dot X interactions from the Cambridge Structural Database (CSD). There is a clear geometric and chemical distinction between type I and type II, with only type II being halogen bonds. Cl/Br isostructurality is explained based on a geometric model. In parallel, experimental studies on 3,4-dichlorophenol and its congeners shed light on the nature of halogen center dot center dot center dot halogen interactions and reveal the chemical difference between Cl and Br. Variable temperature studies also show differences between type I and type II contacts. In terms of crystal design, halogen bonds offer a unique opportunity in the strength, atom size and interaction gradation; this may be used in the design of ternary cocrystals. Structural modularity in which an entire crystal structure is defined as a combination of modules is rationalized on the basis of the intermediate strength of a halogen bond. The specific directionality of the halogen bond makes it a good tool to achieve orthogonality in molecular crystals. Mechanical properties can be tuned systematically by varying these orthogonally oriented halogen center dot center dot center dot halogen interactions. In a further development, halogen bonds are shown to play a systematic role in organization of LSAMs (long range synthon aufbau module), which are bigger structural units containing multiple synthons. With a formal definition in place, this may be the right time to look at differences between halogen bonds and hydrogen bonds and exploit them in more subtle ways in crystal engineering.
Resumo:
Investigations of two-dimensional electron systems (2DES) have been achieved with two model experimental systems, covering two distinct, non-overlapping regimes of the 2DES phase diagram, namely the quantum liquid phase in semiconducting heterostructures and the classical phases observed in electrons confined above the surface of liquid helium. Multielectron bubbles in liquid helium offer an exciting possibility to bridge this gap in the phase diagram, as well as to study the properties of electrons on curved flexible surfaces. However, this approach has been limited because all experimental studies have so far been transient in nature. Here we demonstrate that it is possible to trap and manipulate multielectron bubbles in a conventional Paul trap for several hundreds of milliseconds, enabling reliable measurements of their physical properties and thereby gaining valuable insight to various aspects of curved 2DES that were previously unexplored.
Resumo:
Thin film transistors (TFTs) on elastomers promise flexible electronics with stretching and bending. Recently, there have been several experimental studies reporting the behavior of TFTs under bending and buckling. In the presence of stress, the insulator capacitance is influenced due to two reasons. The first is the variation in insulator thickness depending on the Poisson ratio and strain. The second is the geometric influence of the curvature of the insulator-semiconductor interface during bending or buckling. This paper models the role of curvature on TFT performance and brings to light an elegant result wherein the TFT characteristics is dependent on the area under the capacitance-distance curve. The paper compares models with simulations and explains several experimental findings reported in literature. (C) 2014 AIP Publishing LLC.
Resumo:
Experimental studies and atomistic simulations have shown that brittle metallic glasses fail by a cavitation mechanism whose origin has been traced to the presence of intrinsic atomic density fluctuations which give rise to weak zones with reduced yield strength. It has been shown recently through continuum analysis that the presence of these zones can lower the cavitation stress considerably under equibiaxial loading. The objective of the present work is to study the effect of the applied stress state on the cavitation behavior of such a heterogeneous plastic solid with distributed weak zones. To this end, 2D plane strain finite element simulations are performed by subjecting a unit cell containing a weak zone to different (biaxiality) stress ratios. The volume fraction and yield strength of the weak zone are varied over a wide range. The results show that unlike in a homogeneous plastic solid, the cavitation stress of the heterogeneous aggregate does not reduce appreciably as the stress ratio decreases from unity when the yield strength of the weak zone is low. It is found that a non-dimensional parameter characterizing the stress state prevailing in the weak zone and its yield properties uniquely control the cavitation stress. The nature of cavitation bifurcation may change from unstable bifurcation to the left at sufficiently low stress ratio to one involving snap cavitation at high stress ratio. (C) 2014 Elsevier Ltd. All rights reserved.