145 resultados para Sand particles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Properties of cast aluminium matrix composites are greatly influenced by the nature of distribution of reinforcing phase in the matrix and matrix microstructural length scales, such as grain size, dendrite arm spacing, size and morphology of secondary matrix phases, etc. Earlier workers have shown that SIC reinforcements can act as heterogeneous nucleation sites for Si during solidification of Al-Si-SiC composites. The present study aims at a quantitative understanding of the effect of SiC reinforcements on secondary matrix phases, namely eutectic Si, during solidification of A356 Al-SiC composites. Effect of volume fraction of SiC particulate on size and shape of eutectic Si has been studied at different cooling rates. Results indicate that an increase in SiC volume fraction leads to a reduction in the size of eutectic Si and also changes its morphology from needle-like to equiaxed. This is attributed to the heterogeneous nucleation of eutectic Si on SiC particles. However, SiC particles are found to have negligible influence on DAS. Under all the solidification conditions studied in the present investigation, SiC particles are found to be rejected by the growing dendrites. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the formation of an amorphous phase in nanosized Pi particles embedded in an Al-based glassy alloy matrix. High-resolution electron microscopy (HREM) has been used to show that the particles contain crystalline and amorphous portions. A depression of the melting point by more than 100 K of the crystalline portion of the Pi particles was found by differential scanning calorimetric studies and by in-situ electron microscopy using a heating stage. The same techniques established the absence of an amorphous phase in the particles when the matrix is crystallized. It is shown that the formation of the amorphous phase and the depression of the melting point cannot be explained by the pressure developed by the volume change during solidification in this constrained system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Naturally occurring zircon sand was plasma spray coated on steel substrates previously coated with NiCrAlY bond coat. The coatings were characterized for their microstructure, chemical composition, thermal shock resistance, and the nature of structural phases present, The as-sprayed coatings consisted of t-ZrO2 (major phase), m-ZrO2, ZrSiO4 (minor phases), and amorphous SiO2. These coatings, when annealed at 1200 degrees C/1.44 x 10(4) s yielded a ZrSiO4 phase as a result of the reaction between ZrO2 and SiO2, Dramatic changes occurred in the characteristics of the coatings when a mixture of zircon sand and Y2O3 was plasma spray coated and annealed at 1400 degrees C/1.44 x 10(4) s, The t-ZrO2 phase was completely stabilized, and these coatings were found to have considerable potential for thermal barrier applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particulate reinforcements for polymers are selected with dual objective of improving composite properties and save on the total cost of the system. In the present study fly ash, an industrial waste with good properties is used as filler in epoxy and the compressive properties of such composites are studied. Particle surfaces are treated chemically using a silane-coupling agent to improve the compatibility with the matrix. The compressive properties of these are compared with those made of untreated fly ash particulates. Furthermore properties of fly ash composites with two different average particle sizes are first compared between themselves and then with those made using the as-received bimodal nature of particle size distribution. Microscopic observations of compression tested samples revealed a better adherence of the particles with the matrix in case of treated particles and regards the size effect the composites with lower average particle size showed improved strength at higher filler contents. Experimental values of strengths and modulii are compared with some of the theoretical models for composite properties. (C) 2002 Kluwer Academic Publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for the preparation of acicular hydrogoethite (alpha -FeOOH.xH(2)O, 0.1 < x < 0.22) particles of 0.3-1 mm length has been optimized by air oxidation of Fe( II) hydroxide gel precipitated from aqueous (NH4)(2)Fe(SO4)(2) solutions containing 0.005-0.02 atom% of cationic Pt, Pd or Rh additives as morphology controlling agents. Hydrogoethite particles are evolved from the amorphous ferrous hydroxide gel by heterogeneous nucleation and growth. Preferential adsorption of additives on certain crystallographic planes thereby retarding the growth in the perpendicular direction, allows the particles to acquire acicular shapes with high aspect ratios of 8-15. Synthetic hydrogoethite showed a mass loss of about 14% at similar to 280 degreesC, revealing the presence of strongly coordinated water of hydration in the interior of the goethite crystallites. As evident from IR spectra, excess H2O molecules (0.1- 0.22 per formula unit) are located in the strands of channels formed in between the double ribbons of FeO6 octahedra running parallel to the c- axis. Hydrogoethite particles constituted of multicrystallites are formed with Pt as additive, whereas single crystallite particles are obtained with Pd (or Rh). For both dehydroxylation as well as H-2 reduction, a lower reaction temperature (similar to 220 degreesC) was observed for the former (Pt treated) compared to the latter (Pd or Rh) (similar to 260 degreesC). Acicular magnetite (Fe3O4) was prepared either by reducing hydrogoethite (magnetite route) or dehydroxylating hydrogoethite to hematite and then reducing it to magnetite (hematite- magnetite route). According to TEM studies, preferential dehydroxylation of hydrogoethite along < 010 > leads to microporous hematite. Maghemite (gamma -Fe2O3 (-) (delta), 0 < < 0.25) was obtained by reoxidation of magnetite. The micropores are retained during the topotactic transformation to magnetite and finally to maghemite, whereas cylindrical mesopores are formed due to rearrangement of the oxygen sublattice from hexagonal to cubic close packing during the conversion of hydrogoethite to magnetite and then to maghemite. Accordingly, three different types of maghemite particles are realized: strongly oriented multicrystalline particles, single crystalline acicular particles with micropores or crystallites having mesopores. Higher values of saturation magnetization ((s) = 74 emu g(-1)) and coercivity (H-c = 320 Oe) are obtained for single crystalline mesoporous particles. In the other cases, the smaller size of particles and larger distribution of micropores decreases sigma (s) considerably ( < 60 emu g(-1)) due to relaxation effects of spins on the surface atoms as revealed by Mossbauer spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanodispersed lead in metallic and amorphous matrices was synthesized by rapid solidification processing. The optimum microstructure was tailored to avoid percolation of the particles. With these embedded particles it is possible to study quantitatively the effect of size on the superconducting transition temperature by carrying out quantitative microstructural characterization and magnetic measurements. Our results suggest the role of the matrices in enhancement or depression of superconducting transition temperature of lead. The origin of this difference in behavior with respect to different matrices and sizes is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a method for the dynamic simulation of a collection of self-propelled particles in a viscous Newtonian fluid. We restrict attention to particles whose size and velocity are small enough that the fluid motion is in the creeping flow regime. We propose a simple model for a self-propelled particle, and extended the Stokesian Dynamics method to conduct dynamic simulations of a collection of such particles. In our description, each particle is treated as a sphere with an orientation vector p, whose locomotion is driven by the action of a force dipole Sp of constant magnitude S0 at a point slightly displaced from its centre. To simplify the calculation, we place the dipole at the centre of the particle, and introduce a virtual propulsion force Fp to effect propulsion. The magnitude F0 of this force is proportional to S0. The directions of Sp and Fp are determined by p. In isolation, a self-propelled particle moves at a constant velocity u0 p, with the speed u0 determined by S0. When it coexists with many such particles, its hydrodynamic interaction with the other particles alters its velocity and, more importantly, its orientation. As a result, the motion of the particle is chaotic. Our simulations are not restricted to low particle concentration, as we implement the full hydrodynamic interactions between the particles, but we restrict the motion of particles to two dimensions to reduce computation. We have studied the statistical properties of a suspension of self-propelled particles for a range of the particle concentration, quantified by the area fraction φa. We find several interesting features in the microstructure and statistics. We find that particles tend to swim in clusters wherein they are in close proximity. Consequently, incorporating the finite size of the particles and the near-field hydrodynamic interactions is of the essence. There is a continuous process of breakage and formation of the clusters. We find that the distributions of particle velocity at low and high φa are qualitatively different; it is close to the normal distribution at high φa, in agreement with experimental measurements. The motion of the particles is diffusive at long time, and the self-diffusivity decreases with increasing φa. The pair correlation function shows a large anisotropic build-up near contact, which decays rapidly with separation. There is also an anisotropic orientation correlation near contact, which decays more slowly with separation. Movies are available with the online version of the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact behaviour of epoxy specimens containing 20% by volume of fly ash particles without (coded, FA20) and with surface enveloped by starch in dry (FAS20) and water-ingresses (FASM20) conditions is studied. The resulting behavioural patterns are documented and compared to the composites containing as received fly ash particles. The data on unreinforced (i.e. neat) epoxy system (designated, NE) are also included. Samples with starch covering for the fillers whether tested in dry or wet conditions (i.e. FAS20 & FASM20) showed greater absorption of energy and maximum load compared to the ones derived on composites having as received fillers tested in unexposed (dry) condition (FA20). Ductility Index, D.I. on the other hand, showed a reversal in trends; the energy absorbed was highest for NE and lowest FA20 samples. Scanning microscopic examination of the fracture features was undertaken to correlate the microstructure to impact response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fe-Cr/Al2O3 metal-ceramic composites prepared by hydrogen reduction at different temperatures and for different periods have been investigated by a combined use of Mössbauer spectroscopy, x-ray diffraction, transmission electron microscopy, and energy-dispersive x-ray spectroscopy in order to obtain information on the nature of the metallic species formed. Total reduction of Fe3+ does not occur by increasing the reduction time at 1320 K from 1 to 30 h, and the amount of superparamagnetic metallic species is essentially constant (about 10%). Temperatures higher than 1470 K are needed to achieve nearly total reduction of substitutional Fe3+. Interestingly, iron favors the reduction of chromium. The composition of the Fe-Cr particles is strongly dependent on their size, the Cr content being higher in particles smaller than 10 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The method of stress characteristics has been employed to compute the end-bearing capacity of driven piles. The dependency of the soil internal friction angle on the stress level has been incorporated to achieve more realistic predictions for the end-bearing capacity of piles. The validity of the assumption of the superposition principle while using the bearing capacity equation based on soil plasticity concepts, when applied to deep foundations, has been examined. Fourteen pile case histories were compiled with cone penetration tests (CPT) performed in the vicinity of different pile locations. The end-bearing capacity of the piles was computed using different methods, namely, static analysis, effective stress approach, direct CPT, and the proposed approach. The comparison between predictions made by different methods and measured records shows that the stress-level-based method of stress characteristics compares better with experimental data. Finally, the end-bearing capacity of driven piles in sand was expressed in terms of a general expression with the addition of a new factor that accounts for different factors contributing to the bearing capacity. The influence of the soil nonassociative flow rule has also been included to achieve more realistic results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethylene gas is burnt and the soot generated is sampled thermophoretically at different heights along the flame axis starting from a region close to the root of the flame. The morphology and crystallinity of the particle are recorded using high resolution transmission electron microscopes. The hardness of a single particle is measured using a nanoindenter. The frictional resistance and material removal of a particle are measured using an atomic force microscope. The particles present in the mid-flame region are found to have a crystalline shell. The ones at the flame root are found to be highly disordered and the ones at the flame tip and above have randomly distributed pockets of short range order. The physical state of a particle is found to relate, but not very strongly, with the mechanical and tribological properties of the particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-mold reaction during Ti casting in zircon sand molds has been studied using scanning electron microscope, energy and wave length dispersive analysis of X-rays, X-ray diffraction, microhardness measurements, and chemical analysis. Experimental results suggest that oxides from the mold are not fully leached out by liquid Ti, but oxygen is preferentially transferred to liquid Ti, leaving behind metallic constituents in the mold as lower oxides or intermetallics of Ti. The electron microprobe analysis has revealed the depth profile of contaminants from the mold into the cast Ti metal. The elements Si, Zr and O were found to have diffused to a considerable distance within the Ti metals. A possible mechanism has now been evolved in regard to the reactions that occur during casting of Ti in zircon sand molds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The experimental observations of casting titanium in sodium silicate bonded zircon sand mould are presented in this paper. Metal-mould reactions, in general, involved dissolution of oxides in liquid titanium resulting in contamination of the casting. Minimal metal-mould reactions occurred when titanium was cast in zircon sand mould containing about 7.5 wt% of ZrO2. It has been further shown that the metal-mould reaction is considerably reduced if moulds were fired at high temperatures (> 1273K). This ensured elimination of moisture from the mould and also resulted in some beneficial changes in the mould chemistry. The reduction in metal-mould reaction is reflected in the decrease in oxygen and hydrogen contamination and decrease in hardness. Thus microhardness profile and oxygen analysis seems to provide a good index for evaluation of severity of metal-mould reaction. The method has been demonstrated to be satisfactory for casting titanium components.