120 resultados para SUPER-LATTICE
Resumo:
The spatial search problem on regular lattice structures in integer number of dimensions d >= 2 has been studied extensively, using both coined and coinless quantum walks. The relativistic Dirac operator has been a crucial ingredient in these studies. Here, we investigate the spatial search problem on fractals of noninteger dimensions. Although the Dirac operator cannot be defined on a fractal, we construct the quantum walk on a fractal using the flip-flop operator that incorporates a Klein-Gordon mode. We find that the scaling behavior of the spatial search is determined by the spectral (and not the fractal) dimension. Our numerical results have been obtained on the well-known Sierpinski gaskets in two and three dimensions.
Resumo:
Lattice oxygen of TiO2 is activated by the substitution of Pd ion in its lattice. Ti1-xPdxO2-x (x = 0.01-0.03) have been synthesized by solution combustion method crystallizing in anatase TiO2 structure. Pd is in +2 oxidation state and Ti is in +4 oxidation state in the catalyst. Pd is more ionic in TiO2 lattice compared to Pd in PdO. Oxygen storage capacity defined by ``amount of oxygen that is used reversibly to oxidize CO'' is as high as 5100 mu mol/g of Ti0.97Pd0.03O1.97. Oxygen is extracted by CO to CO2 in absence of feed oxygen even at room temperature which is more than 20 times compared to pure TiO2. Rate of CO oxidation is 2.75 mu mol g(-1) s(-1) at 60 degrees C over Ti0.97Pd0.03O1.97 and C2H2 gets oxidized to CO2 and H2O at room temperature. Catalyst is not poisoned on long time operation of the reactor. Such high catalytic activity is due to activated lattice oxygen created by the substitution of Pd ion as seen from first-principles density functional theory (DFT) calculations with 96 atom supercells of Ti32O64, Ti31Pd1O63, Ti30Pd2O62, and Ti29Pd3O61. The compounds crystallize in anatase TiO2 structure with Pd2+ ion in nearly square planar geometry and TiO6 octahedra are distorted by the creation of weakly bound oxygens. Structural analysis of Ti31Pd1O63 which is close to 3% Pd ion substituted TiO2 shows that oxygens associated with both Ti and Pd ions in the lattice show bond valence sum of 1.87, a low value characteristic of weak oxygen in the lattice compared to oxygens with valence 2 and above in the same lattice. Exact positions of activated oxygens have been identified in the lattice from DFT calculations.
Resumo:
Type Ia supernovae, sparked off by exploding white dwarfs of mass close to the Chandrasekhar limit, play the key role in understanding the expansion rate of the Universe. However, recent observations of several peculiar type Ia supernovae argue for its progenitor mass to be significantly super-Chandrasekhar. We show that strongly magnetized white dwarfs not only can violate the Chandrasekhar mass limit significantly, but exhibit a different mass limit. We establish from a foundational level that the generic mass limit of white dwarfs is 2.58 solar mass. This explains the origin of overluminous peculiar type Ia supernovae. Our finding further argues for a possible second standard candle, which has many far reaching implications, including a possible reconsideration of the expansion history of the Universe. DOI: 10.1103/PhysRevLett.110.071102
Correlation between enhanced lattice polarizability and high piezoelectric response in BiScO3-PbTiO3
Resumo:
Piezoelectric and ex situ electric-field induced structural studies were carried out on closely spaced compositions in the morphotropic phase boundary region of (1 - x) PbTiO3-(x)BiScO3. While the common approach of zero field structural analysis failed to provide a unique relationship between the anomalous piezoresponse of x = 0.3725 and structural factor(s), ex situ study of electric-field induced structural changes revealed that the composition exhibiting the highest piezoelectric response is the one which also exhibits significantly enhanced polarizability of the lattices of both coexisting (monoclinic and tetragonal) phases. The enhanced lattice polarizability manifests as a significant fraction of the monoclinic phase transforming irreversibly to the tetragonal phase after electric poling. DOI: 10.1103/PhysRevB.87.064106
Resumo:
Super-resolution imaging techniques are of paramount interest for applications in bioimaging and fluorescence microscopy. Recent advances in bioimaging demand application-tailored point spread functions. Here, we present some approaches for generating application-tailored point spread functions along with fast imaging capabilities. Aperture engineering techniques provide interesting solutions for obtaining desired system point spread functions. Specially designed spatial filters—realized by optical mask—are outlined both in a single-lens and 4Pi configuration. Applications include depth imaging, multifocal imaging, and super-resolution imaging. Such an approach is suitable for fruitful integration with most existing state-of-art imaging microscopy modalities.
Resumo:
Several recently discovered peculiar Type Ia supernovae seem to demand an altogether new formation theory that might help explain the puzzling dissimilarities between them and the standard Type Ia supernovae. The most striking aspect of the observational analysis is the necessity of invoking super-Chandrasekhar white dwarfs having masses similar to 2.1-2.8 M-circle dot, M-circle dot being the mass of Sun, as their most probable progenitors. Strongly magnetized white dwarfs having super-Chandrasekhar masses have already been established as potential candidates for the progenitors of peculiar Type Ia supernovae. Owing to the Landau quantization of the underlying electron degenerate gas, theoretical results yielded the observationally inferred mass range. Here, we sketch a possible evolutionary scenario by which super-Chandrasekhar white dwarfs could be formed by accretion on to a commonly observed magnetized white dwarf, invoking the phenomenon of flux freezing. This opens multiple possible evolution scenarios ending in supernova explosions of super-Chandrasekhar white dwarfs having masses within the range stated above. We point out that our proposal has observational support, such as the recent discovery of a large number of magnetized white dwarfs by the Sloan Digital Sky Survey.
Resumo:
The classical Chapman-Enskog expansion is performed for the recently proposed finite-volume formulation of lattice Boltzmann equation (LBE) method D.V. Patil, K.N. Lakshmisha, Finite volume TVD formulation of lattice Boltzmann simulation on unstructured mesh, J. Comput. Phys. 228 (2009) 5262-5279]. First, a modified partial differential equation is derived from a numerical approximation of the discrete Boltzmann equation. Then, the multi-scale, small parameter expansion is followed to recover the continuity and the Navier-Stokes (NS) equations with additional error terms. The expression for apparent value of the kinematic viscosity is derived for finite-volume formulation under certain assumptions. The attenuation of a shear wave, Taylor-Green vortex flow and driven channel flow are studied to analyze the apparent viscosity relation.
Resumo:
The pressure dependences of Cl-35 nuclear quadrupole resonance (NQR) frequency, temperature and pressure variation of spin lattice relaxation time (T-1) were investigated in 3,4-dichlorophenol. T-1 was measured in the temperature range 77-300 K. Furthermore, the NQR frequency and T-1 for these compounds were measured as a function of pressure up to 5 kbar at 300 K. The temperature dependence of the average torsional lifetimes of the molecules and the transition probabilities W-1 and W-2 for the Delta m = +/- 1 and Delta m = +/- 2 transitions were also obtained. A nonlinear variation of NQR frequency with pressure has been observed and the pressure coefficients were observed to be positive. A thermodynamic analysis of the data was carried out to determine the constant volume temperature coefficients of the NQR frequency. An attempt is made to compare the torsional frequencies evaluated from NQR data with those obtained by IR spectra. On selecting the appropriate mode from IR spectra, a good agreement with torsional frequency obtained from NQR data is observed. The previously mentioned approach is a good illustration of the supplementary nature of the data from IR studies, in relation to NQR studies of compounds in solid state.
Resumo:
Super-resolution microscopy has tremendously progressed our understanding of cellular biophysics and biochemistry. Specifically, 4pi fluorescence microscopy technique stands out because of its axial super-resolution capability. All types of 4pi-microscopy techniques work well in conjugation with deconvolution techniques to get rid of artifacts due to side-lobes. In this regard, we propose a technique based on spatial filter in a 4pi-type-C confocal setup to get rid of these artifacts. Using a special spatial filter, we have reduced the depth-of-focus. Interference of two similar depth-of-focus beams in a 4 pi geometry result in substantial reduction of side-lobes. Studies show a reduction of side-lobes by 46% and 76% for single and two photon variant compared to 4pi - type - C confocal system. This is incredible considering the resolving capability of the existing 4pi - type - C confocal microscopy. Moreover, the main lobe is found to be 150 nm for the proposed spatial filtering technique as compared to 690 nm of the state-of-art confocal system. Reconstruction of experimentally obtained 2PE - 4pi data of green fluorescent protein (GFP)-tagged mitocondrial network shows near elimination of artifacts arising out of side-lobes. Proposed technique may find interesting application in fluorescence microscopy, nano-lithography, and cell biology. (C) 2013 AIP Publishing LLC.
Resumo:
We study the structure constants of the N = 1 beta deformed theory perturbatively and at strong coupling. We show that the planar one loop corrections to the structure constants of single trace gauge invariant operators in the scalar sector is determined by the anomalous dimension Hamiltonian. This result implies that 3 point functions of the chiral primaries of the theory do not receive corrections at one loop. We then study the structure constants at strong coupling using the Lunin-Maldacena geometry. We explicitly construct the supergravity mode dual to the chiral primary with three equal U(1) R-charges in the Lunin-Maldacena geometry. We show that the 3 point function of this supergravity mode with semi-classical states representing two other similar chiral primary states but with large U(1) charges to be independent of the beta deformation and identical to that found in the AdS(5) x S-5 geometry. This together with the one-loop result indicate that these structure constants are protected by a non-renormalization theorem. We also show that three point function of U(1) R-currents with classical massive strings is proportional to the R-charge carried by the string solution. This is in accordance with the prediction of the R-symmetry Ward identity.
Resumo:
We develop a strong-coupling (t << U) expansion technique for calculating the density profile for bosonic atoms trapped in an optical lattice with an overall harmonic trap at finite temperature and finite on-site interaction in the presence of superfluid regions. Our results match well with quantum Monte Carlo simulations at finite temperature. We also show that the superfluid order parameter never vanishes in the trap due to the proximity effect. Our calculations for the scaled density in the vacuum-to-superfluid transition agree well with the experimental data for appropriate temperatures. We present calculations for the entropy per particle as a function of temperature which can be used to calibrate the temperature in experiments. We also discuss issues connected with the demonstration of universal quantum critical scaling in the experiments.
Resumo:
Theoretical studies exist to compute the atomic arrangement in gold nanowires and the influence on their electronic behavior with decreasing diameter. Experimental studies, e.g., by transmission electron microscopy, on chemically synthesized ultrafine wires are however lacking owing to the unavailability of suitable protocols for sample preparation and the stability of the wires under electron beam irradiation. In this work, we present an atomic scale structural investigation on quantum single crystalline gold nanowires of 2 nm diameter, chemically prepared on a carbon film grid. Using low dose aberration-corrected high resolution (S)TEM, we observe an inhomogeneous strain distribution in the crystal, largely concentrated at the twin boundaries and the surface along with the presence of facets and surface steps leading to a noncircular cross section of the wires. These structural aspects are critical inputs needed to determine their unique electronic character and their potential as a suitable catalyst material. Furthermore, electron-beam-induced structural changes at the atomic scale, having implications on their mechanical behavior and their suitability as interconnects, are discussed.
Resumo:
We present a nonequilibrium strong-coupling approach to inhomogeneous systems of ultracold atoms in optical lattices. We demonstrate its application to the Mott-insulating phase of a two-dimensional Fermi-Hubbard model in the presence of a trap potential. Since the theory is formulated self-consistently, the numerical implementation relies on a massively parallel evaluation of the self-energy and the Green's function at each lattice site, employing thousands of CPUs. While the computation of the self-energy is straightforward to parallelize, the evaluation of the Green's function requires the inversion of a large sparse 10(d) x 10(d) matrix, with d > 6. As a crucial ingredient, our solution heavily relies on the smallness of the hopping as compared to the interaction strength and yields a widely scalable realization of a rapidly converging iterative algorithm which evaluates all elements of the Green's function. Results are validated by comparing with the homogeneous case via the local-density approximation. These calculations also show that the local-density approximation is valid in nonequilibrium setups without mass transport.
Resumo:
We use a dual gated device structure to introduce a gate-tuneable periodic potential in a GaAs/AlGaAs two dimensional electron gas (2DEG). Using only a suitable choice of gate voltages we can controllably alter the potential landscape of the bare 2DEG, inducing either a periodic array of antidots or quantum dots. Antidots are artificial scattering centers, and therefore allow for a study of electron dynamics. In particular, we show that the thermovoltage of an antidot lattice is particularly sensitive to the relative positions of the Fermi level and the antidot potential. A quantum dot lattice, on the other hand, provides the opportunity to study correlated electron physics. We find that its current-voltage characteristics display a voltage threshold, as well as a power law scaling, indicative of collective Coulomb blockade in a disordered background.
Resumo:
Using a recently developed strong-coupling method, we present a comprehensive theory for doublon production processes in modulation spectroscopy of a three-dimensional system of ultracold fermionic atoms in an optical lattice with a trap. The theoretical predictions compare well to the experimental time traces of doublon production. For experimentally feasible conditions, we provide a quantitative prediction for the presence of a nonlinear ``two-photon'' excitation at strong modulation amplitudes.