219 resultados para STRAIN-RATE DEPENDENCE
Resumo:
The purpose of this study is to experimentally investigate the interaction of inelastic deformation and microstructural changes of two Zr-based bulk metallic glasses (BMGs): Zr41.25Ti13.75Cu12.5Ni10Be22.5 (commercially designated as Vitreloy 1 or Vit1) and Zr46.75Ti8.25Cu7.5Ni10Be27.5 (Vitreloy 4, Vit4). High-temperature uniaxial compression tests were performed on the two Zr alloys at various strain rates, followed by structural characterization using differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). Two distinct modes of mechanically induced atomic disordering in the two alloys were observed, with Vit1 featuring clear phase separation and crystallization after deformation as observed with TEM, while Vit4 showing only structural relaxation with no crystallization. The influence of the structural changes on the mechanical behaviors of the two materials was further investigated by jump-in-strain-rate tests, and flow softening was observed in Vit4. A free volume theory was applied to explain the deformation behaviors, and the activation volumes were calculated for both alloys.
Resumo:
This paper deals with the simulation-driven study of the impact of hardened steel projectiles on thin aluminium target plates using explicit finite element analysis as implemented in LS-DYNA. The evaluation of finite element modelling includes a comprehensive mesh convergence study using shell elements for representing target plates and the solid element-based representation of ogivalnosed projectiles. A user-friendly automatic contact detection algorithm is used for capturing interaction between the projectile and the target plate. It is shown that the proper choice of mesh density and strain rate-dependent material properties is crucial as these parameters significantly affect the computed residual velocity. The efficacy of correlation with experimental data is adjudged in terms of a 'correlation index' defined in the present study for which values close to unity are desirable.By simulating laboratory impact tests on thin aluminium plates carried out by earlier investigators, extremely good prediction of experimental ballistic limits has been observed with correlation indices approaching unity. Additional simulation-based parametric studies have been carried out and results consistent with test data have been obtained. The simulation procedures followed in the present study can be applied with confidence in designing thin aluminium armour plates for protection against low calibre projectiles.
Resumo:
Under hot-forming conditions characterized by high homologous temperatures and strain-rates, metals usually exhibit rate-dependent inelastic behavior. An elastic-viscoplastic constitutive model is presented here to describe metal behavior during hot-forming. The model uses an isotropic internal variable to represent the resistance offered to plastic deformation by the microstructure. Evolution equations are developed for the inelastic strain and the deformation resistance based on experimental results. A methodology is presented for extracting model parameters from constant true strain-rate compression tests performed at different temperatures. Model parameters are determined for an Al-1Mn alloy and an Al-Mg-Si alloy, and the predictions of the model are shown to be in good agreement with the experimental data. (C) 2000 Kluwer Academic Publishers.
Resumo:
The alloy, Ti-6Al-4V is an alpha + beta Ti alloy that has large prior beta grain size (similar to 2 mm) in the as cast state. Minor addition of B (about 0.1 wt.%) to it refines the grain size significantly as well as produces in-situ TiB needles. The role played by these microstructural modifications on high temperature deformation processing maps of B-modified Ti64 alloys is examined in this paper.Power dissipation efficiency and instability maps have been generated within the temperature range of 750-1000 degrees C and strain rate range of 10(-3)-10(+1) s(-1). Various deformation mechanisms, which operate in different temperature-strain rate regimes, were identified with the aid of the maps and complementary microstructural analysis of the deformed specimens. Results indicate four distinct deformation domains within the range of experimental conditions examined, with the combination of 900-1000 degrees C and 10(-3)-10(-2) s(-1) being the optimum for hot working. In that zone, dynamic globularization of alpha laths is the principle deformation mechanism. The marked reduction in the prior beta grain size, achieved with the addition of B, does not appear to alter this domain markedly. The other domains, with negative values of instability parameter, show undesirable microstructural features such as extensive kinking/bending of alpha laths and breaking of beta laths for Ti64-0.0B as well as generation of voids and cracks in the matrix and TiB needles in the B-modified alloys. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The creep behaviour of a creep-resistant AE42 magnesium alloy has been examined in the temperature range of 150 to 240 degrees C at the stress levels ranging from 40 to 120 MPa using impression creep technique. A normal creep behaviour, i.e., strain rate decreasing with strain and then reaching a steady state, is observed at all the temperatures and stresses employed The stress exponent varies from 5.1 to 5.7 and the apparent activation energy varies from 130 to 140 kJ/mol, which suggests the high temperature climb of dislocation controlled by lattice self-diffusion being the dominant creep mechanism in the stress and temperature range employed The creep behaviour of the AE42 alloy has also been compared with its composites reinforced with Saffil short fibres and SiC particles in four combinations. All the composites exhibited a lower creep rate than the monolithic AE42 alloy tested at the same temperature and stress levels and the decrease in creep rate was greater in the longitudinal direction than in the transverse direction, as expected. All the hybrid composites, i.e., the composites reinforced with a combination of Saffil short fibres and SiC particles, exhibited creep rates comparable to the composite reinforced with 20% Saffil short fibres alone at all the temperature and stress levels employed, which is beneficial from the commercial point of view.
Resumo:
Electrodeposited nanocrystalline Ni films were processed with different levels of S, to evaluate the role of S on superplasticity. All the materials exhibited high strain rate superplasticity at a relatively low temperature of 777 K. Microstructural characterization revealed that the S was converted to a Ni3S2 phase which melts at 908 K; no S could be detected at grain boundaries. There was no consistent variation in ductility with S content. Superplasticity was associated with a strain rate sensitivity of similar to 0.8 and an inverse grain size exponent of similar to 1 both of which are unusual observations in superplastic flow of metals. Based on the detailed experiments and analysis, it is concluded that superplasticity in nano-Ni is related to an interface controlled diffusion creep process, and it is not related to the presence of S at grain boundaries or a liquid phase at grain boundaries. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The hot deformation behaviors of β brass in the temperature range of 550°C to 800°C and α-β brass in the temperature range of 450°C to 800°C have been characterized in the strain rate range of 0.001 to 100 s−1 using processing maps developed on the basis of the Dynamic Materials Model. The map for β brass revealed a domain of superplasticity in the entire temperature range and at strain rates lower than 1 s−1, with a maximum efficiency of power dissipation of about 68 pct. The temperature variation of the efficiency of power dissipation in the domain is similar to that of the diffusion coefficient for zinc in β brass, confirming that the diffusion-accommodated flow controls the superplasticity. The material undergoes microstructural instability in the form of adiabatic shear bands and strain markings at temperatures lower than 700°C and at strain rates higher than 10 s−1. The map for α-β brass revealed a wide domain for processing in the temperature range of 550°C to 800°C and at strain rates lower than 1 s−1, with a maximum efficiency of 54 pct occurring at about 750°C and 0.001 s−1. In the domain, the α phase undergoes dynamic recrystallization and controls the hot deformation of the alloy, while the β phase deforms superplastically. At strain rates greater than 1 s−1, α-β brass exhibits microstructural instabilities manifested as flow rotations at lower temperatures and localized shear bands at higher temperatures.
Resumo:
The hot deformation characteristics of alpha-zirconium in the temperature range of 650 °C to 850 °C and in the strain-rate range of 10-3 to 102 s-1 are studied with the help of a power dissipation map developed on the basis of the Dynamic Materials Model.[7,8,9] The processing map describes the variation of the efficiency of power dissipation (η =2m/m + 1) calculated on the basis of the strain-rate sensitivity parameter (m), which partitions power dissipation between thermal and microstructural means. The processing map reveals a domain of dynamic recrystallization in the range of 730 °C to 850 °C and 10−2 to 1−1 with its peak efficiency of 40 pct at 800 °C and 0.1 s-1 which may be considered as optimum hot-working parameters. The characteristics of dynamic recrystallization are similar to those of static recrystallization regarding the sigmoidal variation of grain size (or hardness) with temperature, although the dynamic recrystallization temperature is much higher. When deformed at 650 °C and 10-3 s-1 texture-induced dynamic recovery occurred, while at strain rates higher than 1 s-1, alpha-zirconium exhibits microstructural instabilities in the form of localized shear bands which are to be avoided in processing.
Resumo:
The present article deals with the development of a finite element modelling approach for the prediction of residual velocities of hard core ogival-nose projectiles following normal impact on mild steel target plates causing perforation. The impact velocities for the cases analysed are in the range 818–866.3 m/s. Assessment of finite element modelling and analysis includes a comprehensive mesh convergence study using shell elements for representing target plates and solid elements for jacketed projectiles with a copper sheath and a rigid core. Dynamic analyses were carried out with the explicit contact-impact LS-DYNA 970 solver. It has been shown that proper choice of element size and strain rate-based material modelling of target plate are crucial for obtaining test-based residual velocity.The present modelling procedure also leads to realistic representation of target plate failure and projectile sheath erosion during perforation, and confirms earlier observations that thermal effects are not significant for impact problems within the ordnance range. To the best of our knowledge, any aspect of projectile failure or degradation obtained in simulation has not been reported earlier in the literature. The validated simulation approach was applied to compute the ballistic limits and to study the effects of plate thickness and projectile diameter on residual velocity, and trends consistent with experimental data for similar situations were obtained.
Resumo:
In some recent dropweight impact experiments [5] with pre-notched bend specimens of 4340 steel, it was observed that considerable crack tunneling occurred in the interior of the specimen prior to gross fracture initiation on the free surfaces. The final failure of the side ligaments happened because of shear lip formation. The tunneled region is characterized by a flat, fibrous fracture surface. In this paper, the experiments of [5] (corresponding to 5 m/s impact speed) are analyzed using a plane strain, dynamic finite element procedure. The Gurson constitutive model that accounts for the ductile failure mechanisms of micro-void nucleation, growth and coalescence is employed. The time at which incipient failure was observed near the notch tip in this computation, and the value of the dynamic J-integral, J d, at this time, compare reasonably well with experiments. This investigation shows that J-controlled stress and deformation fields are established near the notch tip whenever J d , increases with time. Also, it is found that the evolution of micro-mechanical quantities near the notch root can be correlated with the time variation of J d .The strain rate and the adiabatic temperature rise experienced at the notch root are examined. Finally, spatial variations of stresses and deformations are analyzed in detail.
Resumo:
The hot deformation behaviour of polycrystalline nickel has been characterised in the temperature range 750-1200-degrees-C and strain rate range 0.0003-100 s-1 using processing maps developed in the basis of the dynamic materials model. The efficiency of power dissipation, given by [2m/(m + 1)]. where m is the strain rate sensitivity, is plotted as a function of temperature and strain rate to obtain a processing map. A domain of dynamic recrystallisation has been identified, with a peak efficiency of 31% occurring at 925-degrees-C and 1 s-1. The published results are in agreement with the prediction of the processing map. The variations of efficiency of power dissipation with temperature and strain rate in the dynamic recrystallisation domain are identical to the corresponding variation of hot ductility. The stress-strain curves exhibited a single peak in a single peak in the dynamic recrystallisation domain, whereas multiple peaks and 'drooping' stress-strain curves were observed at lower and higher strain rates, respectively. The results are explained on the basis of a simple model which considers dynamic recrystallisation in terms of rates of interface formation (nucleation) and migration (growth). It is shown that dynamic recrystallisation in nickel is controlled by the rate of nucleation, which is slower than the rate of migration. The rate of nucleation itself depends on the process of thermal recovery by climb, which in turn depends on self-diffusion.
Resumo:
The hot deformation behavior of α brass with varying zinc contents in the range 3%–30% was characterized using hot compression testing in the temperature range 600–900 °C and strain rate range 0.001–100 s−1. On the basis of the flow stress data, processing maps showing the variation of the efficiency of power dissipation (given by Image where m is the strain rate sensitivity) with temperature and strain rate were obtained. α brass exhibits a domain of dynamic recrystallization (DRX) at temperatures greater than 0.85Tm and at strain rates lower than 1 s−1. The maximum efficiency of power dissipation increases with increasing zinc content and is in the range 33%–53%. The DRX domain shifts to lower strain rates for higher zinc contents and the strain rate for peak efficiency is in the range 0.0001–0.05 s−1. The results indicate that the DRX in α brass is controlled by the rate of interface formation (nucleation) which depends on the diffusion-controlled process of thermal recovery by climb.
Resumo:
The compression test flow stress data of Al-4Mg alloy at different temperatures and strain rates are analysed using a dynamic materials model which considers the workpiece material as a dissipator of power causing microstructural changes. A processing map representing the efficiency of power dissipation as a function of temperature and strain rate has been established and optimum processing conditions for the alloy are determined. The features of the map correlate well with the microstructure and mechanical properties.
Resumo:
Friction plays an important role in metal forming processes, and the surface texture of the die is a major factor that influences friction. In the present investigation, experiments were conducted to understand the role of surface texture of the harder die surface and load on coefficient of friction. The data analysis showed that the coefficient of friction is highly dependent on the surface texture of the die surface. Assigning different magnitude of coefficients of friction, obtained in the experiments, at different regions between the die and the workpiece, Finite element (FE) simulation of a compression test was carried out to understand the effect of friction on deformation and stress/strain-rate distribution. Simulation results revealed that, owing to the difference in coefficient of friction, there is a change in metal flow pattern. Both experimental and simulation results confirmed that the surface texture of the die surface and thus coefficient of friction directly affects the strain rate and flow pattern of the workpiece.
Resumo:
The constitutive flow behaviour of OFHC copper under working conditions is studied using hot compression in the temperature range 650 to 900-degrees-C and strain rate range 0.001 to 100 s-1. The variation of the efficiency of power dissipation given by [2m/(m + 1)] (where m is the strain rate sensitivity) with temperature and strain rate is represented in the form of a power dissipation map and interpreted on the basis of the Dynamic Materials Model. The map prominently exhibited a domain centered at 850-degrees-C and 100 s-1 with a peak efficiency of 35 %. On the basis of the correlation of variations of grain size, efficiency of power dissipation and hot workability with temperature, the domain is identified to represent dynamic recrystallization (DRX).