125 resultados para SOL-GEL COMPOSITES
Resumo:
In situ polymerization of 3,4-ethylenedioxythiophene with sol-gel-derived mesoporous carbon (MC) leading to a new composite and its subsequent impregnation with Pt nanoparticles for application in polymer electrolyte fuel cells (PEFCs) is reported. The composite exhibits good dispersion and utilization of platinum nanoparticles akin to other commonly used microporous carbon materials, such as carbon black. Pt-supported MC-poly(3,4-ethylenedioxythiophene) (PEDOT) composite also exhibits promising electrocatalytic activity toward oxygen reduction reaction, which is central to PEFCs. The PEFC with Pt-loaded MC-PEDOT support exhibits 75% of enhancement in its power density in relation to the PEFC with Pt-loaded pristine MC support while operating under identical conditions. It is conjectured that Pt-supported MC-PEDOT composite ameliorates PEFC performance/durability on repetitive potential cycling. (C) 2010 The Electrochemical Society. DOI: 10.1149/1.3486172] All rights reserved.
Resumo:
The surfactant-assisted seed-mediated growth method was used for the formation of gold nanorods (GNRs) directly on gold (Au) and indium tin oxide (ITO) surfaces. Citrate-stabilized similar to 2.6 nm spherical gold nanoparticles (AuNPs) were first self-assembled on ITO or Au surfaces modified with (3-mercaptopropyl)-trimethoxysilane (MPTS) sol-gel film and then immersed in a cationic surfactant growth solution to form GNRs. The growth of GNRs on the MPTS sol gel film modified ITO surface was monitored by UV-visible spectroscopy. The ITO surface with the attached spherical AuNPs shows a surface plasmon resonance band at 550 nm. The intensity of this absorption band increases while increasing the immersion time of the AuNP-modified ITO surface into the growth solution, and after 5 h, an additional shoulder band around 680 nm was observed. The intensity of this shoulder band increases, and it was shifted to longer wavelength as the immersion time of the AuNP-modified ITO surface into the growth solution increases. After 20 h, a predominant wave at 720 nm was observed along with a band at 550 nm. Further immersion of the modified ITO surface into the growth solution did not change the absorption characteristics. The bands observed at 550 and 720 nm were characteristics of GNRs, corresponding to transverse and longitudinal waves, respectively. The AFM images showed the presence of GNRs on the surface of the MPTS sol gel modified ITO surface with a typical length of similar to 100-120 nm and a width of similar to 20-22 nm in addition to a few spherical AuNPs, indicating that seeded spherical AuNPs were not completely involved in the GNRs' formation. Finally, the electrocatalytic activity of the surface-grown GNRs on the MPTS sol gel film modified Au electrode toward the oxidation of ascorbic acid (AA) was studied. Unlike a polycrystalline Au electrode, the surface-grown GNR-modified electrode shows two well-defined voltammetric peaks for AA at 0.01 and 0.35 V in alkaline, neutral, and acidic pHs. The cause for the observed two oxidation peaks for AA was due to the presence of both nanorods and spherical nanoparticles on the electrode surface. The presence of spherical AuNPs on the MPTS sol gel film oxidized AA at more positive potential, whereas the GNRs oxidized AA at less positive potential. The observed 340 mV less positive potential shift in the oxidation of AA suggested that GNRs are better electrocatalysts for the oxidation of AA than the spherical AuNPs.
Resumo:
Carbon-supported Pt-TiO2 (Pt-TiO2/C) catalyst with varying atomic ratio of Pt to Ti, namely, 1: 1, 2: 1, and 3: 1, is prepared by sol-gel method and its electrocatalytic activity toward oxygen-reduction reaction (ORR) is evaluated for the application in polymer electrolyte fuel cells (PEFCs). The optimum atomic ratio of Pt to Ti in Pt-TiO2/C and annealing temperature are established by cyclic voltammetry and fuel-cell-polarization studies. Pt-TiO2/C annealed at 750 degrees C with Pt and Ti in atomic ratio of 2: 1, namely, 750 Pt-TiO2/C (2: 1), shows enhanced electrocatalytic activity toward ORR. It is found that the incorporation of TiO2 with Pt ameliorates both electrocatalytic activity and stability of cathode in relation to pristine Pt cathode, currently being used in PEFCs. A power density of 0.75 W/cm(2) is achieved at 0.6 V for the PEFC with 750 Pt-TiO2/C (2: 1) as compared with 0.62 W/cm(2) at 0.6 V achieved with the PEFC comprising Pt/C as cathode catalyst while operating under identical conditions. Interestingly, carbon-supported Pt-TiO2 cathode exhibits only 6% loss in electrochemical surface area after 5000 potential cycles while it is as high as 25% for Pt/C. DOI: 10.1115/1.4002466]
Resumo:
We have synthesized Dy3+-doped ZnO nanoparticles at room temperature through the sol-gel method. X-ray diffraction and Scanning electron microscopic studies confirm the crystalline nature of the particles. Excitonic absorption of ZnO shows three different bands, and we observe that incorporation of Dy3+ results in the shifting and broadening of the n=1 absorption band of ZnO. Photoluminescence studies done at the excitation wavelength of 335 nm show broad emission containing five different bands. Open-aperture z-scan studies done at 532 nm using 5 ns laser pulses show an optical limiting behavior, which numerically fits to a three-photon type absorption process. The nonlinearity is essentially resonant, as it is found to increase consistently with Dy3+ concentration. This feature makes Dy3+-doped ZnO a flexible optical limiter for potential device applications.
Resumo:
Reduction behaviour of Fe3+/Al2O3 obtained by the decomposition of the oxalate precursor has been investigated by employing X-ray diffraction (XRD), Mössbauer spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. Calcination of Fe3+/Al2O3 at or below 1070 K yields mainly a poorly ordered, fine particulate form of ?-Al2�xFexO3. Calcination at or above 1220 K yields ?-Al2�xFexO3. Reduction of Fe3+/Al2O3 samples calcined at or below 1070 K gives the FeAl2O4 spinel on reduction at 870 K; samples calcined at or above 1220 K give Al2-xFexO3 with a very small proportion of metallic iron. Fe3+/Al2O3 samples calcined at 1220 K or above yield metallic iron and a very small proportion of the spinel on reduction below 1270 K. In the samples reduced at or above 1270 K, the main product is metallic iron in both ferromagnetic and superparamagnetic forms. The oxalate precursor route yields more metallic iron than the sol�gel route.
Resumo:
Fine particles of willemite, alpha -Zn2SiO4, were prepared by both solution combustion and sol-gel methods. Both processes yield single-phase, large-surface area (26- and 78-m(2)/g), sinteractive willemite powders. Thermal evolution of crystalline phases was studied using X-ray powder diffraction patterns. The combustion method favors low-temperature formation of willemite compared to the sol-gel method. The powders, when uniaxially pressed and sintered at 1300 degreesC, achieved 78-80% theoretical density. The microstructures of the sintered body show the presence of equiaxed 0.5- to 4-mum grains. Blue pigments of willemite doped with Co2+ and Ni2+ were also prepared by the combustion process.
Resumo:
La-graded heterostructure films were prepared by sol-gel technique on platinum substrates and electrical properties of these films were compared with those of conventional thin films of similar compositions. X-ray diffraction results indicate the pure perovskite polycrystalline structure of these films. Atomic Force Microscopy analysis revealed a finer grain size and relatively lower surface roughness. Relatively higher values of Pm and Pr (69 and 38 ?C cm?2, respectively) and excellent dielectric properties with lower loss (K=1900, tan ?=0.035 at 100 kHz) were observed for La-graded heterostructure films. Also lower leakage current density (not, vert, similar2.5 nA cm?2) and a higher onset field (not, vert, similar50 kV cm?1) of space charge conduction indicated higher breakdown strength and good leakage current characteristics. The ac electric field dependence of the permittivity at sub-switching fields was analyzed in the framework of the Rayleigh dynamics of domain walls. The estimated irreversible domain wall displacement contribution to the total dielectric permittivity was 17 and 9% for conventional 15 at.% La doped PbTiO3 and La-graded heterostructure films, respectively. The improved dielectric and polarization behavior of La-graded heterostructure films may be attributed to homogenous dopant distribution compared to the conventional 15 at.% La doped PbTiO3 films.
Resumo:
Nanostructured materials have attracted considerable interest in recent years due to their properties which differ strongly from their bulk phase and potential applications in nanoscale electronic and optoelectronic devices. Metal oxide nanostructures can be synthesized by variety of different synthesis techniques developed in recent years such as thermal decomposition, sol-gel technique, chemical coprecipitation, hydrothermal process, solvothermal process, spray pyrolysis, polyol process etc. All the above processes go through a tedious synthesis procedure followed by prolonged heat treatment at elevated temperature and are time consuming. In the present work we describe a rapid microwave irradiation-assisted chemical synthesis technique for the growth of nanoparticles, nanorods, and nanotubes of a variety of metal oxides in the presence of an appropriate surfactant, without the use of any templates The method is simple, inexpensive, and helps one to prepare nanostructures in a very simple way, and in a very short time, measured in minutes. The synthesis procedure employs high quality metalorganic complexes (typically -diketonates) featuring a direct metal-to-oxygen bond in its molecular structure. The complex is dissolved in a suitable solvent, often with a surfactant added, and the solution then subjected to microwave irradiation in a domestic microwave oven operating at 2.45 GHz frequency with power varying from 160-800 W, from a few seconds to a few minutes, leading to the formation of corresponding metal oxides. This method has been used successfully to synthesize nanostructures of a variety of binary and ternary metal oxides such as ZnO, CdO, Fe2O3, CuO, Ga2O3, Gd2O3, ZnFe2O4, etc. There is an observed variation in the morphology of the nanostructures with the change of different parameters such as microwave power, irradiation time, appropriate solvent, surfactant type and concentration. Cationic, anionic, nonionic and polymeric surfactants have been used to generate a variety of nanostructures. Even so, to remove the surfactant, there is either no need of heat treatment or a very brief exposure to heat suffices, to yield highly pure and crystalline oxide materials as prepared. By adducting the metal complexes, the shape of the nanostructures can be controlled further. In this manner, very well formed, single-crystalline, hexagonal nanorods and nanotubes of ZnO have been formed. Adducting the zinc complex leads to the formation of tapered ZnO nanorods with a very fine tip, suitable for electron emission applications. Particle size and their monodispersity can be controlled by a suitable choice of a precursor complex, the surfactant, and its concentration. The resulting metal oxide nanostructures have been characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, FTIR spectroscopy, photoluminescence, and electron emission measurements.
Resumo:
The Packaging Research Center has been developing next generation system-on-a-package (SOP) technology with digital, RF, optical, and sensor functions integrated in a single package/module. The goal of this effort is to develop a platform substrate technology providing very high wiring density and embedded thin film passive and active components using PWB compatible materials and processes. The latest SOP baseline process test vehicle has been fabricated on novel Si-matched CTE, high modulus C-SiC composite core substrates using 10mum thick BCB dielectric films with loss tangent of 0.0008 and dielectric constant of 2.65. A semi-additive plating process has been developed for multilayer microvia build-up using BCB without the use of any vacuum deposition or polishing/CMP processes. PWB and package substrate compatible processes such as plasma surface treatment/desmear and electroless/electrolytic pulse reverse plating was used. The smallest line width and space demonstrated in this paper is 6mum with microvia diameters in the 15-30mum range. This build-up process has also been developed on medium CTE organic laminates including MCL-E-679F from Hitachi Chemical and PTFE laminates with Cu-Invar-Cu core. Embedded decoupling capacitors with capacitance density of >500nF/cm2 have been integrated into the build-up layers using sol-gel synthesized BaTiO3 thin films (200-300nm film thickness) deposited on copper foils and integrated using vacuum lamination and subtractive etch processes. Thin metal alloy resistor films have been integrated into the SOP substrate using two methods: (a) NiCrAlSi thin films (25ohms per square) deposited on copper foils (Gould Electronics) laminated on the build-up layers and two step etch process for resistor definition, and (b) electroless plated Ni-W-P thin films (70 ohms to few Kohms per square) on the BCB dielectric by plasma surface treatment and activation. The electrical design and build-up layer structure along- - with key materials and processes used in the fabrication of the SOP4 test vehicle were presented in this paper. Initial results from the high density wiring and embedded thin film components were also presented. The focus of this paper is on integration of materials, processes and structures in a single package substrate for system-on-a-package (SOP) implementation
Resumo:
Nanoparticles (dia ~ 5 - 7 nm) of Bi0.5X0.5(X=Ca,Sr)MnO3 are prepared by polymer assisted sol-gel method and characterized by various physico-chemical techniques. X-ray diffraction gives evidence for single phasic nature of the materials as well as their structures. Mono dispersed to a large extent, isolated nanoparticles are seen in the transmission electron micrographs. High resolution electron microscopy shows the crystalline nature of the nanoparticles. Superconducting quantum interferometer based magnetic measurements from 10K to 300K show that these nanomanganites retain the charge ordering nature unlike Pr and Nd based nanomanganites. The CO in Bi based manganites is thus found to be very robust consistent with the observation that magnetic field of the order of 130 T are necessary to melt the CO in these compounds. These results are supported by electron magnetic resonance measurements.
Resumo:
A capillary-enforced template-based method has been applied to fabricate Pb(0.76)Ca(0.24)TiO(3) (PCT24) nanotubes via filling PCT24 precursor solution, prepared by modified sol-gel method, into nanochannels of anodic aluminum oxide templates. The morphology and structure of as-prepared PCT24 were examined by scanning electron microscopy, transmission electron microscopy (TEM) and X-ray diffraction techniques. The obtained PCT24 nanotubes with diameter of similar to 200 nm and wall thickness of similar to 20 nm exhibited a tetragonal perovskite structure. High resolution TEM (HRTEM) analysis confirmed that as-obtained PCT24 nanotubes made up of nanoparticles (5-8 nm) which were randomly aligned in the nanotubes. Formation of some solid crystalline PCT24 nanorods, Y-junctions and multi-branches were observed. Interconnections in the pores of template are responsible for the growth of Y-junctions and multi-branches. The possible formation mechanism of PCT24 nanotubes/nanorods was discussed. Ferroelectric hysteresis loops of PCT24 nanotube arrays were measured, showing a room temperature ferroelectric characteristic of as-prepared PCT24 nanotubes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The anatase phase of titania (TiO2) nano-photocatalysts was prepared using a modified sol gel process and thereafter embedded on carbon-covered alumina supports. The carbon-covered alumina (CCA) supports were prepared via the adsorption of toluene 2,4-diisocyanate (TDI) on the surface of the alumina. TDI was used as the carbon source for the first time for the carbon-covered alumina support system. The adsorption of TDI on alumina is irreversible; hence, the resulting organic moiety can undergo pyrolysis at high temperatures resulting in the formation of a carbon coating on the surface of the alumina. The TiO2 catalysts were impregnated on the CCA supports. X-ray diffraction analysis indicated that the carbon deposited on the alumina was not crystalline and also showed the successful impregnation of TiO2 on the CCA supports. In the Raman spectra, it could be deduced that the carbon was rather a conjugated olefinic or polycyclic hydrocarbons which can be considered as molecular units of a graphitic plane. The Raman analysis of the catalysed CCAs showed the presence of both the anatase titania and D and G band associated with the carbon of the CCAs. The scanning electron microscope micrographs indicated that the alumina was coated by a carbon layer and the energy dispersive X-ray spectra showed the presence of Al, O and C in the CCA samples, with the addition of Ti for the catalyst impregnated supports. The Brunauer Emmet and Teller surface area analysis showed that the incorporating of carbon on the alumina surface resulted in an increase in surface area, while the impregnation with TiO2 resulted in a further increase in surface area. However, a decrease in the pore volume and diameter was observed. The photocatalytic activity of the nanocatalysts was studied for the degradation of Rhodamine B dye. The CCA-TiO2 nanocatalysts were found to be more photocatalytically active under both visible and UV light irradiation compared to the free TIO2 nanocatalysts.
Resumo:
We report the results of magnetization and electron paramagnetic resonance (EPR) studies on nanoparticles (average diameter similar to 30 nm) of Bi0.25Ca0.75MnO3 (BCMO) and compare them with the results on bulk BCMO. The nanoparticles were prepared using the nonaqueous sol-gel technique and characterized by XRD and TEM analysis. Magnetization measurements were carried out with a commercial physical property measurement system (PPMS). While the bulk BCMO exhibits a charge ordering transition at similar to 230 K and an antiferromagnetic (AFM) transition at similar to 130 K, in the nanoparticles, the CO phase is seen to have disappeared and a transition to a ferromagnetic (FM) state is observed at T-c similar to 120 K. However, interestingly, the exchange bias effect observed in other nanomanganite ferromagnets is absent in BCMO nanoparticles. EPR measurements were carried out in the X-band between 8 and 300 K. Lineshape fitting to a Lorentzian with two terms (accounting for both the clockwise and anticlockwise rotations of the microwave field) was employed to obtain the relevant EPR parameters as functions of temperature. The results confirm the occurrence of ferromagnetism in the nanoparticles of BCMO. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4730612]
Photocatalytic degradation of gaseous toluene by using immobilized titania/silica on aluminum sheets
Resumo:
The aim of this study was to prepare a highly active immobilized titania/silica photocatalyst and to test its performance in situ toward degradation of toluene as one of the major toxic indoor contaminants. In this work, two different titania layers immobilized on Al sheets were synthesized via low temperature sol-gel method employing presynthesized highly active titania powders (Degussa P25 and Millennium PC500, mass ratio 1:1): (a) with a silica/titania binder and a protective layer and (b) without the binder. The photocatalysts were characterized by X-ray diffraction, nitrogen sorption measurements, scanning electron microscopy (SEM), infrared spectroscopy, and UV-vis diffuse reflectance spectroscopy (DRS). The in situ photocatalytic degradation of gaseous toluene was selected as a probe reaction to test photocatalytic activity and to verify the potential application of these materials for air remediation. Results show that nontransparent highly photocatalytically active coatings based on the silica/titania binder and homogeneously dispersed TiO2 powders were obtained on the Al sheets. The crystalline structure of titania was not altered upon addition of the binder, which also prevented inhomogeneous agglomeration of particles on the photocatalyst surface. The photoactivity results indicate that the adsorption properties and photocatalytic activity of immobilized photocatalysts with the silica/titania binder and an underlying protective layer were very effective and additionally, they exhibited considerably improved adhesion and uniformity. We present a new highly photocatalytically active immobilized catalyst on a convenient metallic support, which has a potential application in an air cleaning device.