451 resultados para SEARCH TECHNIQUE
Resumo:
A new parallel algorithm for transforming an arithmetic infix expression into a par se tree is presented. The technique is based on a result due to Fischer (1980) which enables the construction of the parse tree, by appropriately scanning the vector of precedence values associated with the elements of the expression. The algorithm presented here is suitable for execution on a shared memory model of an SIMD machine with no read/write conflicts permitted. It uses O(n) processors and has a time complexity of O(log2n) where n is the expression length. Parallel algorithms for generating code for an SIMD machine are also presented.
Resumo:
A pressed-plate Fe electrode for alkalines storage batteries, designed using a statistical method (fractional factorial technique), is described. Parameters such as the configuration of the base grid, electrode compaction temperature and pressure, binder composition, mixing time, etc. have been optimised using this method. The optimised electrodes have a capacity of 300 plus /minus 5 mA h/g of active material (mixture of Fe and magnetite) at 7 h rate to a cut-off voltage of 8.86V vs. Hg/HgO, OH exp 17 ref.
Resumo:
Bulk SixTe100-x (10 less-than-or-equals, slant x less-than-or-equals, slant 28) glasses have been prepared by the melt quenching technique. The crystallization of these glasses has been studied by using differential scanning calorimetry. The composition dependence of the glass transition temperature Tg, the recrystallization temperature Tcr and the melting temperature Tm show an unusual behaviour at the composition x congruent with 20. The glasses with 10 less-than-or-equals, slant x less-than-or-equals, slant 20 undergo double glass transition and double stage crystallization phenomena. On the other hand, glasses with 22 less-than-or-equals, slant x less-than-or-equals, slant 28 exhibit eutectic crystallization. The phases at different stages of crystallization have been identified by using X-ray diffraction techniques. The unusual behaviour at x congruent with 20 can be explained on the basis of the changes in the network topologies of IV-VI chalcogenide glasses.
Resumo:
A semi-similar solution of an unsteady laminar compressible three-dimensional stagnation point boundary layer flow with massive blowing has been obtained when the free stream velocity varies arbitrarily with time. The resulting partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme with a quasi-linearization technique in the nodal point region and an implicit finite-difference scheme with a parametric differentiation technique in the saddle point region. The results have been obtained for two particular unsteady free stream velocity distributions: (i) an accelerating stream and (ii) a fluctuating stream. Results show that the skin-friction and heat-transfer parameters respond significantly to the time dependent arbitrary free stream velocity. Velocity and enthalpy profiles approach their free stream values faster as time increases. There is a reverse flow in the y-wise velocity profile, and overshoot in the x-wise velocity and enthalpy profiles in the saddle point region, which increase as injection and wall temperature increase. Location of the dividing streamline increases as injection increases, but as the wall temperature and time increase, it decreases.
Resumo:
The paper present a spectral iteration technique for the analysis of linear arrays of unequally spaced dipoles of unequal lengths. As an example, the Yagi-Uda array is considered for illustration. Analysis is carried out in both the spatial as well as the spectral domains, the two being linked by the Fourier transform. The fast Fourier transform algorithm is employed to obtain an iterative solution to the electric field integral equation and the need for matrix inversion is circumvented. This technique also provides a convenient means for testing the satisfaction of the boundary conditions on the array elements. Numerical comparison of the input impedance and radiation pattern have been made with results deduced elsewhere by other methods. The computational efficency of this technique has been found to be significant for large arrays.
Resumo:
This paper is concerned the calculation of flame structure of one-dimensional laminar premixed flames using the technique of operator-splitting. The technique utilizes an explicit method of solution with one step Euler for chemistry and a novel probabilistic scheme for diffusion. The relationship between diffusion phenomenon and Gauss-Markoff process is exploited to obtain an unconditionally stable explicit difference scheme for diffusion. The method has been applied to (a) a model problem, (b) hydrazine decomposition, (c) a hydrogen-oxygen system with 28 reactions with constant Dρ 2 approximation, and (d) a hydrogen-oxygen system (28 reactions) with trace diffusion approximation. Certain interesting aspects of behaviour of the solution with non-unity Lewis number are brought out in the case of hydrazine flame. The results of computation in the most complex case are shown to compare very favourably with those of Warnatz, both in terms of accuracy of results as well as computational time, thus showing that explicit methods can be effective in flame computations. Also computations using the Gear-Hindmarsh for chemistry and the present approach for diffusion have been carried out and comparison of the two methods is presented.
Resumo:
This paper presents a novel approach for designing of generator excitation controllers using Interconnection and Damping Assignment Passivity Based Control (IDA-PBC) technique for a Single Machine Infinite Bus (SMIB) system that can also be directly used in a multi-machine environment. The generator system equations are modified by referencing the rotor angle with respect to the secondary of the transformer bus instead of the infinite bus. For the modified system equations, IDA-PBC is applied to stabilize the system around an operating condition. The IDA-PBC design results in a Lyapunov function for the modified system. The new control law is practically feasible and can be applied directly to multi-machine system without referring to external system parameters. The effectiveness of the proposed controller is tested on a SMIB and a 10 generator 39 bus test system for a range of operating conditions. The Proposed excitation controller has shown good performance for both small and large disturbances when compared to the performance of a conventional static exciter with power system stabilizer.
Resumo:
Non-linear planar response of a string to planar narrow band random excitation is investigated in this paper. A response equation for the mean square deflection σ2 is obtained under a single mode approximation by using the equivalent linearization technique. It is shown that the response is triple valued, as in the case of harmonic excitation, if the centre frequency of excitation Ω lies in a certain specified range. The triple valued response occurs only if the excitation bandwidth β is smaller than a critical value βcrit which is a monotonically increasing function of the intensity of excitation. An approximate method of investigating the almost sure asymptotic stability of the solution is presented and regions of instability in the Ω-σ2 plane have been charted. It is shown that planar response can become unstable either due to an unbounded growth of the in-plane component of motion or due to a spontaneous appearance of an out-of-plane component.
Resumo:
In this study, reduction and desorption of oxides of nitrogen (NOx) were conducted using an electrical discharge plasma technique. The study was carried out using a simulated gas mixture to explore the possibility of re-generation of used adsorbents by a nonthermal plasma desorption technique. Three different types of corona electrodes, namely, pipe, helical wire, and straight wire, were used for analyzing their effectiveness in NOx reduction/desorption. The pipe-type corona electrode exhibited a nitric oxide (NO) conversion of 50%, which is 1.5 times that of the straight-wire-type electrode at an energy density of 175J/L. The helical-wire-type corona electrode exhibited a NOx desorption efficiency almost 4 times that of the pipe-type electrode,indicating the possibility that corona-generated species play a crucial role in desorption.
Resumo:
The Gaussian probability closure technique is applied to study the random response of multidegree of freedom stochastically time varying systems under non-Gaussian excitations. Under the assumption that the response, the coefficient and the excitation processes are jointly Gaussian, deterministic equations are derived for the first two response moments. It is further shown that this technique leads to the best Gaussian estimate in a minimum mean square error sense. An example problem is solved which demonstrates the capability of this technique for handling non-linearity, stochastic system parameters and amplitude limited responses in a unified manner. Numerical results obtained through the Gaussian closure technique compare well with the exact solutions.
Resumo:
Enhancement of the photoacoustic signal from condensed materials by several folds is achieved by the introduction of a liquid with high vapor pressure in the photoacoustic cell. The enhancement is especially marked for low absorption coefficients and high chopping frequencies. Typically the enhancement is two to nine times in the presence of diethyl ether at 293 K. A linear relationship is observed between the enhancement and the vapor pressure of the liquid.
Resumo:
A rapid quenching technique with a quenching rate of roughly 106°C/sec has been developed to prepare glassy samples of ABO3 type materials. Glasses of potassium lithium niobate have been prepared by this technique. These glasses have been characterized by x-ray diffraction, electron diffraction and differential scanning calorimetry techniques to assess the quality of the obtained glasses.
Resumo:
Using the promeasure technique, we give an alternative evaluation of a path integral corresponding to a quadratic action with a generalized memory.
Resumo:
This work explores the electrical properties of p-SnS/n-ITO heterojunction at different temperatures. The p-type SnS film was deposited on n-type ITO substrate using the thermal evaporation technique and its junction properties were studied using two probe method. The as-grown p-n junction exhibited weak rectifying behaviour with a low Saturation current of the order of similar to 10(-6) A. While increasing temperature, the saturation current of the junction is increased and however, its series resistance decreased. At all temperatures the junction exhibited three types of transport mechanisms depending on applied bias-voltage. At lower voltages the junction showed nearly ideal diode characteristics. The junction behaviour with respect to bias-voltage and temperature is discussed with the help of existing theories and energy band diagram.
Resumo:
Theoretical approaches are of fundamental importance to predict the potential impact of waste disposal facilities on ground water contamination. Appropriate design parameters are generally estimated be fitting theoretical models to data gathered from field monitoring or laboratory experiments. Transient through-diffusion tests are generally conducted in the laboratory to estimate the mass transport parameters of the proposed barrier material. Thes parameters are usually estimated either by approximate eye-fitting calibration or by combining the solution of the direct problem with any available gradient-based techniques. In this work, an automated, gradient-free solver is developed to estimate the mass transport parameters of a transient through-diffusion model. The proposed inverse model uses a particle swarm optimization (PSO) algorithm that is based on the social behavior of animals searching for food sources. The finite difference numerical solution of the forward model is integrated with the PSO algorithm to solve the inverse problem of parameter estimation. The working principle of the new solver is demonstrated and mass transport parameters are estimated from laboratory through-diffusion experimental data. An inverse model based on the standard gradient-based technique is formulated to compare with the proposed solver. A detailed comparative study is carried out between conventional methods and the proposed solver. The present automated technique is found to be very efficient and robust. The mass transport parameters are obtained with great precision.