87 resultados para Running-based anaerobic sprint test
Resumo:
Content Distribution Networks (CDNs) are widely used to distribute data to large number of users. Traditionally, content is being replicated among a number of surrogate servers, leading to high operational costs. In this context, Peer-to-Peer (P2P) CDNs have emerged as a viable alternative. An issue of concern in P2P networks is that of free riders, i.e., selfish peers who download files and leave without uploading anything in return. Free riding must be discouraged. In this paper, we propose a criterion, the Give-and-Take (G&T) criterion, that disallows free riders. Incorporating the G&T criterion in our model, we study a problem that arises naturally when a new peer enters the system: viz., the problem of downloading a `universe' of segments, scattered among other peers, at low cost. We analyse this hard problem, and characterize the optimal download cost under the G&T criterion. We propose an optimal algorithm, and provide a sub-optimal algorithm that is nearly optimal, but runs much more quickly; this provides an attractive balance between running time and performance. Finally, we compare the performance of our algorithms with that of a few existing P2P downloading strategies in use. We also study the computation time for prescribing the strategy for initial segment and peer selection for the newly arrived peer for various existing and proposed algorithms, and quantify cost-computation time trade-offs.
Resumo:
For space applications, the weight of the liquid level sensors are of major concern as they affect the payload fraction and hence the cost. An attempt is made to design and test a light weight High Temperature Superconductor (HTS) wire based liquid level sensor for Liquid Oxygen (LOX) tank used in the cryostage of the spacecraft. The total resistance value measured of the HTS wire is inversely proportional to the liquid level. A HTS wire (SF12100) of 12mm width and 2.76m length without copper stabilizer has been used in the level sensor. The developed HTS wire based LOX level sensor is calibrated against a discrete diode array type level sensor. Liquid Nitrogen (LN2) and LOX has been used as cryogenic fluid for the calibration purpose. The automatic data logging for the system has been done using LabVIEW11. The net weight of the developed sensor is less than 1 kg.
Resumo:
This paper investigates the use of adaptive group testing to find a spectrum hole of a specified bandwidth in a given wideband of interest. We propose a group testing-based spectrum hole search algorithm that exploits sparsity in the primary spectral occupancy by testing a group of adjacent subbands in a single test. This is enabled by a simple and easily implementable sub-Nyquist sampling scheme for signal acquisition by the cognitive radios (CRs). The sampling scheme deliberately introduces aliasing during signal acquisition, resulting in a signal that is the sum of signals from adjacent subbands. Energy-based hypothesis tests are used to provide an occupancy decision over the group of subbands, and this forms the basis of the proposed algorithm to find contiguous spectrum holes of a specified bandwidth. We extend this framework to a multistage sensing algorithm that can be employed in a variety of spectrum sensing scenarios, including noncontiguous spectrum hole search. Furthermore, we provide the analytical means to optimize the group tests with respect to the detection thresholds, number of samples, group size, and number of stages to minimize the detection delay under a given error probability constraint. Our analysis allows one to identify the sparsity and SNR regimes where group testing can lead to significantly lower detection delays compared with a conventional bin-by-bin energy detection scheme; the latter is, in fact, a special case of the group test when the group size is set to 1 bin. We validate our analytical results via Monte Carlo simulations.
Resumo:
In this work, the hypothesis testing problem of spectrum sensing in a cognitive radio is formulated as a Goodness-of-fit test against the general class of noise distributions used in most communications-related applications. A simple, general, and powerful spectrum sensing technique based on the number of weighted zero-crossings in the observations is proposed. For the cases of uniform and exponential weights, an expression for computing the near-optimal detection threshold that meets a given false alarm probability constraint is obtained. The proposed detector is shown to be robust to two commonly encountered types of noise uncertainties, namely, the noise model uncertainty, where the PDF of the noise process is not completely known, and the noise parameter uncertainty, where the parameters associated with the noise PDF are either partially or completely unknown. Simulation results validate our analysis, and illustrate the performance benefits of the proposed technique relative to existing methods, especially in the low SNR regime and in the presence of noise uncertainties.
Resumo:
The atomization characteristics of blends of bioderived camelina hydrogenated renewable jet (HRJ) alternative fuel with conventional aviation kerosene (Jet A-1) discharging into ambient atmospheric air from a dual-orifice atomizer used in aircraft engines are described. The spray tests are conducted in a spray test facility at six different test flow conditions to compare the atomization of alternative fuels with that of Jet A-1. The fuel sprays are characterized in terms of fuel discharge, spray cone angle, drop size distribution, and spray patternation. The measurements of spray drop size distribution are obtained using laser diffraction based Spraytec equipment. The characteristics of fuel discharge and cone angle of alternative fuel sprays do not show any changes from that of Jet A-1 sprays. The characteristics of spray drop size, evaluated in terms of the variation of mean drop size along the spray axis, for the alternative fuel sprays remain unaffected by the variation in fuel properties between the alternative fuels and Jet A-1. The measurements on spray patternation, obtained using a mechanical patternator at a distance 5.1 cm from the atomizer exit, show an enhanced fuel concentration in the vicinity of spray axis region for the alternative fuel sprays discharging from the dual-orifice atomizer.
Resumo:
In this paper, we study two multi-dimensional Goodness-of-Fit tests for spectrum sensing in cognitive radios. The multi-dimensional scenario refers to multiple CR nodes, each with multiple antennas, that record multiple observations from multiple primary users for spectrum sensing. These tests, viz., the Interpoint Distance (ID) based test and the h, f distance based tests are constructed based on the properties of stochastic distances. The ID test is studied in detail for a single CR node case, and a possible extension to handle multiple nodes is discussed. On the other hand, the h, f test is applicable in a multi-node setup. A robustness feature of the KL distance based test is discussed, which has connections with Middleton's class A model. Through Monte-Carlo simulations, the proposed tests are shown to outperform the existing techniques such as the eigenvalue ratio based test, John's test, and the sphericity test, in several scenarios.
Resumo:
Selection of relevant features is an open problem in Brain-computer interfacing (BCI) research. Sometimes, features extracted from brain signals are high dimensional which in turn affects the accuracy of the classifier. Selection of the most relevant features improves the performance of the classifier and reduces the computational cost of the system. In this study, we have used a combination of Bacterial Foraging Optimization and Learning Automata to determine the best subset of features from a given motor imagery electroencephalography (EEG) based BCI dataset. Here, we have employed Discrete Wavelet Transform to obtain a high dimensional feature set and classified it by Distance Likelihood Ratio Test. Our proposed feature selector produced an accuracy of 80.291% in 216 seconds.
Resumo:
The nodes with dynamicity, and management without administrator are key features of mobile ad hoc networks (1VIANETs). Increasing resource requirements of nodes running different applications, scarcity of resources, and node mobility in MANETs are the important issues to be considered in allocation of resources. Moreover, management of limited resources for optimal allocation is a crucial task. In our proposed work we discuss a design of resource allocation protocol and its performance evaluation. The proposed protocol uses both static and mobile agents. The protocol does the distribution and parallelization of message propagation (mobile agent with information) in an efficient way to achieve scalability and speed up message delivery to the nodes in the sectors of the zones of a MANET. The protocol functionality has been simulated using Java Agent Development Environment (JADE) Framework for agent generation, migration and communication. A mobile agent migrates from central resource rich node with message and navigate autonomously in the zone of network until the boundary node. With the performance evaluation, it has been concluded that the proposed protocol consumes much less time to allocate the required resources to the nodes under requirement, utilize less network resources and increase the network scalability. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
In this work, we study the well-known r-DIMENSIONAL k-MATCHING ((r, k)-DM), and r-SET k-PACKING ((r, k)-SP) problems. Given a universe U := U-1 ... U-r and an r-uniform family F subset of U-1 x ... x U-r, the (r, k)-DM problem asks if F admits a collection of k mutually disjoint sets. Given a universe U and an r-uniform family F subset of 2(U), the (r, k)-SP problem asks if F admits a collection of k mutually disjoint sets. We employ techniques based on dynamic programming and representative families. This leads to a deterministic algorithm with running time O(2.851((r-1)k) .vertical bar F vertical bar. n log(2)n . logW) for the weighted version of (r, k)-DM, where W is the maximum weight in the input, and a deterministic algorithm with running time O(2.851((r-0.5501)k).vertical bar F vertical bar.n log(2) n . logW) for the weighted version of (r, k)-SP. Thus, we significantly improve the previous best known deterministic running times for (r, k)-DM and (r, k)-SP and the previous best known running times for their weighted versions. We rely on structural properties of (r, k)-DM and (r, k)-SP to develop algorithms that are faster than those that can be obtained by a standard use of representative sets. Incorporating the principles of iterative expansion, we obtain a better algorithm for (3, k)-DM, running in time O(2.004(3k).vertical bar F vertical bar . n log(2)n). We believe that this algorithm demonstrates an interesting application of representative families in conjunction with more traditional techniques. Furthermore, we present kernels of size O(e(r)r(k-1)(r) logW) for the weighted versions of (r, k)-DM and (r, k)-SP, improving the previous best known kernels of size O(r!r(k-1)(r) logW) for these problems.
Resumo:
The Restricted Boltzmann Machines (RBM) can be used either as classifiers or as generative models. The quality of the generative RBM is measured through the average log-likelihood on test data. Due to the high computational complexity of evaluating the partition function, exact calculation of test log-likelihood is very difficult. In recent years some estimation methods are suggested for approximate computation of test log-likelihood. In this paper we present an empirical comparison of the main estimation methods, namely, the AIS algorithm for estimating the partition function, the CSL method for directly estimating the log-likelihood, and the RAISE algorithm that combines these two ideas.
Resumo:
Among the multiple advantages and applications of remote sensing, one of the most important uses is to solve the problem of crop classification, i.e., differentiating between various crop types. Satellite images are a reliable source for investigating the temporal changes in crop cultivated areas. In this letter, we propose a novel bat algorithm (BA)-based clustering approach for solving crop type classification problems using a multispectral satellite image. The proposed partitional clustering algorithm is used to extract information in the form of optimal cluster centers from training samples. The extracted cluster centers are then validated on test samples. A real-time multispectral satellite image and one benchmark data set from the University of California, Irvine (UCI) repository are used to demonstrate the robustness of the proposed algorithm. The performance of the BA is compared with two other nature-inspired metaheuristic techniques, namely, genetic algorithm and particle swarm optimization. The performance is also compared with the existing hybrid approach such as the BA with K-means. From the results obtained, it can be concluded that the BA can be successfully applied to solve crop type classification problems.
Resumo:
This study reports the synthesis and photophysical properties of a star-shaped, novel, fluoranthene-tetraphenylethene (TFPE) conjugated luminogen, which exhibits aggregation-induced blue-shifted emission (AIBSE). The bulky fluoranthene units at the periphery prevent intramolecular rotation (IMR) of phenyl rings and induces a blueshift with enhanced emission. The AIBSE phenomenon was investigated by solvatochromic and temperature-dependent emission studies. Nanoaggregates of TFPE, formed by varying the water/THF ratio, were investigated by SEM and TEM and correlated with optical properties. The TFPE conjugate was found to be a promising fluorescent probe towards the detection of nitroaromatic compounds (NACs), especially for 2,4,6-trinitrophenol (PA) with high sensitivity and a high Stern-Volmer quenching constant. The study reveals that nanoaggregates of TFPE formed at 30 and 70% water in THF showed unprecedented sensitivity with detection limits of 0.8 and 0.5ppb, respectively. The nanoaggregates formed at water fractions of 30 and 70% exhibit high Stern-Volmer constants (K-sv=79998 and 51120m(-1), respectively) towards PA. Fluorescence quenching is ascribed to photoinduced electron transfer between TFPE and NACs with a static quenching mechanism. Test strips coated with TFPE luminogen demonstrate fast and ultra-low-level detection of PA for real-time field analysis.