95 resultados para Rigid body with a fixed point


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We focus on the energy spent in radio communication by the stations (STAs) in an IEEE 802.11 infrastructure WLAN. All the STAs are engaged in web browsing, which is characterized by a short file downloads over TCP, with short duration of inactivity or think time in between two file downloads. Under this traffic, Static PSM (SPSM) performs better than CAM, since the STAs in SPSM can switch to low power state (sleep) during think times while in CAM they have to be in the active state all the time. In spite of this gain, performance of SPSM degrades due to congestion, as the number of STAs associated with the access point (AP) increases. To address this problem, we propose an algorithm, which we call opportunistic PSM (OPSM). We show through simulations that OPSM performs better than SPSM under the aforementioned TCP traffic. The performance gain achieved by OPSM over SPSM increases as the mean file size requested by the STAs or the number of STAs associated with the AP increases. We implemented OPSM in NS-2.33, and to compare the performance of OPSM and SPSM, we evaluate the number of file downloads that can be completed with a given battery capacity and the average time taken to download a file.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using an efficient numerical scheme that exploits spatial symmetries and spin parity, we have obtained the exact low-lying eigenstates of exchange Hamiltonians for ferric wheels up to Fe-12. The largest calculation involves the Fe-12 ring which spans a Hilbert space dimension of about 145x10(6) for the M-S=0 subspace. Our calculated gaps from the singlet ground state to the excited triplet state agree well with the experimentally measured values. Study of the static structure factor shows that the ground state is spontaneously dimerized for ferric wheels. The spin states of ferric wheels can be viewed as quantized states of a rigid rotor with the gap between the ground and first excited states defining the inverse of the moment of inertia. We have studied the quantum dynamics of Fe-10 as a representative of ferric wheels. We use the low-lying states of Fe-10 to solve exactly the time-dependent Schrodinger equation and find the magnetization of the molecule in the presence of an alternating magnetic field at zero temperature. We observe a nontrivial oscillation of the magnetization which is dependent on the amplitude of the ac field. We have also studied the torque response of Fe-12 as a function of a magnetic field, which clearly shows spin-state crossover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microwave (MW) thawing of 2D frozen cylinders exposed to uniform plane waves from one face, is modeled using the effective heat capacity formulation with the MW power obtained from the electric field equations. Computations are illustrated for tylose (23% methyl cellulose gel) which melts over a range of temperatures giving rise to a mushy zone. Within the mushy region the dielectric properties are functions of the liquid volume fraction. The resulting coupled, time dependent non-linear equations are solved using the Galerkin finite element method with a fixed mesh. Our method efficiently captures the multiple connected thawed domains that arise due to the penetration of MWs in the sample. For a cylinder of diameter D, the two length scales that control the thawing dynamics are D/D-p and D/lambda(m), where D-p and lambda(m) are the penetration depth and wavelength of radiation in the sample respectively. For D/D-p, D/lambda(m) much less than 1 power absorption is uniform and thawing occurs almost simultaneously across the sample (Regime I). For D/D-p much greater than 1 thawing is seen to occur from the incident face, since the power decays exponentially into the sample (Regime III). At intermediate values, 0.2 < D/D-p, D/lambda(m) < 2.0 (Regime II) thawing occurs from the unexposed face at smaller diameters, from both faces at intermediate diameters and from the exposed and central regions at larger diameters. Average power absorption during thawing indicates a monotonic rise in Regime I and a monotonic decrease in Regime III. Local maxima in the average power observed for samples in Regime II are due to internal resonances within the sample. Thawing time increases monotonically with sample diameter and temperature gradients in the sample generally increase from Regime I to Regime III. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cavitation-noise measurements from an axisymmetric body with ‘controlled’ generation of cavitation are reported. The control was achieved by seeding artificial nuclei in the boundary layer by electrolysis. It was possible to alter the number density of nuclei by varying the electrolysis voltage, polarity and the geometry of the electrode. From the observed trend of cavitation-noise data it is postulated that there exists an ‘interference effect’ which influences cavitation noise. When the nucleus-number density is high and cavitation numbers are low this effect is strong. Under these conditions the properties of cavitation noise are found to differ considerably from those expected based on theories concerning noise from single-spherical-bubble cavitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-rate analysis of channel-optimized vector quantizationThis paper considers the high-rate performance of channel optimized source coding for noisy discrete symmetric channels with random index assignment. Specifically, with mean squared error (MSE) as the performance metric, an upper bound on the asymptotic (i.e., high-rate) distortion is derived by assuming a general structure on the codebook. This structure enables extension of the analysis of the channel optimized source quantizer to one with a singular point density: for channels with small errors, the point density that minimizes the upper bound is continuous, while as the error rate increases, the point density becomes singular. The extent of the singularity is also characterized. The accuracy of the expressions obtained are verified through Monte Carlo simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inverse suspension polymerization was carried out to synthesize poly(acrylic acid-co-sodium acrylate-co-acrylamide) superabsorbent polymers (SAPs) crosslinked with ethylene glycol dimethacrylate (EGDMA). The equilibrium swelling capacities of the SAPs, determined by swelling them in DI water, were found to vary with the acrylamide (AM) content. The SAPs were used to adsorb four cationic dyes (Acriflavine, Auramine-O, Azure-I and Pyronin-Y). The effect of AM content in the SAPs on the adsorption of the cationic dyes was investigated. Different initial concentrations of Azure-I were used with the same amount of the SAP to explore the effect of initial dye concentration on the adsorption. The effect of the adsorbent amount was investigated by taking different amounts of SAP with a fixed initial concentration of Acriflavine. The kinetics of the dye adsorption was modeled by a first order model and the equilibrium amount of the dye adsorbed, adsorption rate coefficients, removal efficiency and partition coefficients were determined. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the presence of a synthetic non-Abelian gauge field that produces a Rashba-like spin-orbit interaction, a collection of weakly interacting fermions undergoes a crossover from a Bardeen-Cooper-Schrieffer (BCS) ground state to a Bose-Einstein condensate (BEC) ground state when the strength of the gauge field is increased (Vyasanakere et al 2011 Phys. Rev. B 84 014512). The BEC that is obtained at large gauge coupling strengths is a condensate of tightly bound bosonic fermion pairs. The properties of these bosons are solely determined by the Rashba gauge field-hence called rashbons. In this paper, we conduct a systematic study of the properties of rashbons and their dispersion. This study reveals a new qualitative aspect of the problem of interacting fermions in non-Abelian gauge fields, i.e. that the rashbon state ceases to exist when the center-of-mass momentum of the fermions exceeds a critical value that is of the order of the gauge coupling strength. The study allows us to estimate the transition temperature of the rashbon BEC and suggests a route to enhance the exponentially small transition temperature of the system with a fixed weak attraction to the order of the Fermi temperature by tuning the strength of the non-Abelian gauge field. The nature of the rashbon dispersion, and in particular the absence of the rashbon states at large momenta, suggests a regime in parameter space where the normal state of the system will be a dynamical mixture of uncondensed rashbons and unpaired helical fermions. Such a state should show many novel features including pseudogap physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Precision inspection of manufactured components having multiple complex surfaces and variable tolerance definition is an involved, complex and time-consuming function. In routine practice, a jig is used to present the part in a known reference frame to carry out the inspection process. Jigs involve both time and cost in their development, manufacture and use. This paper describes 'as is where is inspection' (AIWIN), a new automated inspection technique that accelerates the inspection process by carrying out a fast registration procedure and establishing a quick correspondence between the part to inspect and its CAD geometry. The main challenge in doing away with a jig is that the inspection reference frame could be far removed from the CAD frame. Traditional techniques based on iterative closest point (ICP) or Newton methods require either a large number of iterations for convergence or fail in such a situation. A two-step coarse registration process is proposed to provide a good initial guess for a modified ICP algorithm developed earlier (Ravishankar et al., Int J Adv Manuf Technol 46(1-4):227-236, 2010). The first step uses a calibrated sphere for local hard registration and fixing the translation error. This transformation locates the centre for the sphere in the CAD frame. In the second step, the inverse transformation (involving pure rotation about multiple axes) required to align the inspection points measured on the manufactured part with the CAD point dataset of the model is determined and enforced. This completes the coarse registration enabling fast convergence of the modified ICP algorithm. The new technique has been implemented on complex freeform machined components and the inspection results clearly show that the process is precise and reliable with rapid convergence. © 2011 Springer-Verlag London Limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the motion of a ferromagnetic helical nanostructure under the action of a rotating magnetic field. A variety of dynamical configurations were observed that depended strongly on the direction of magnetization and the geometrical parameters, which were also confirmed by a theoretical model, based on the dynamics of a rigid body under Stokes flow. Although motion at low Reynolds numbers is typically deterministic, under certain experimental conditions the nanostructures showed a surprising bistable behavior, such that the dynamics switched randomly between two configurations, possibly induced by thermal fluctuations. The experimental observations and the theoretical results presented in this paper are general enough to be applicable to any system of ellipsoidal symmetry under external force or torque.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address the classical problem of delta feature computation, and interpret the operation involved in terms of Savitzky- Golay (SG) filtering. Features such as themel-frequency cepstral coefficients (MFCCs), obtained based on short-time spectra of the speech signal, are commonly used in speech recognition tasks. In order to incorporate the dynamics of speech, auxiliary delta and delta-delta features, which are computed as temporal derivatives of the original features, are used. Typically, the delta features are computed in a smooth fashion using local least-squares (LS) polynomial fitting on each feature vector component trajectory. In the light of the original work of Savitzky and Golay, and a recent article by Schafer in IEEE Signal Processing Magazine, we interpret the dynamic feature vector computation for arbitrary derivative orders as SG filtering with a fixed impulse response. This filtering equivalence brings in significantly lower latency with no loss in accuracy, as validated by results on a TIMIT phoneme recognition task. The SG filters involved in dynamic parameter computation can be viewed as modulation filters, proposed by Hermansky.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ion conducting glasses in xLiCl-20Li(2)O-(80-x) 0.80P(2)O(5)-0.20MoO(3)] glass system have been prepared over a wide range of composition (X = 5, 10, 15, 20 and 25 mol%). The electrical conductivity and dielectric relaxation of these glasses were analyzed using impedance spectroscopy in the frequency range of 10 Hz-10 MHz and in the temperature range of 313-353 K. D.c. activation energies extracted from Arrhenius plots using regression analysis, decreases with increasing LiCl mol%. A.c. conductivity data has been fitted to both single and double power law equation with both fixed and variable parameters. The increased conductivity in the present glass system has been correlated with the volume increasing effect and the coordination changes that occur due to structural modification resulting in the creation of non-bridging oxygens (NBO's) of the type O-Mo-O- bonds in the glass network. Dielectric relaxation mechanism in these glasses is analyzed using Kohlrausch-Williams-Watts (KWW) stretched exponential function and stretched exponent (beta) is found to be insensitive to temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-packet reception (MPR) promises significant throughput gains in wireless local area networks (WLANs) by allowing nodes to transmit even in the presence of ongoing transmissions in the medium. However, the medium access control (MAC) layer must now be redesigned to facilitate rather than discourage - these overlapping transmissions. We investigate asynchronous MPR MAC protocols, which successfully accomplish this by controlling the node behavior based on the number of ongoing transmissions in the channel. The protocols use the backoff timer mechanism of the distributed coordination function, which makes them practically appealing. We first highlight a unique problem of acknowledgment delays, which arises in asynchronous MPR, and investigate a solution that modifies the medium access rules to reduce these delays and increase system throughput in the single receiver scenario. We develop a general renewal-theoretic fixed-point analysis that leads to expressions for the saturation throughput, packet dropping probability, and average head-of-line packet delay. We also model and analyze the practical scenario in which nodes may incorrectly estimate the number of ongoing transmissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We experimentally study the effect of having hinged leaflets at the jet exit on the formation of a two-dimensional counter-rotating vortex pair. A piston-cylinder mechanism is used to generate a starting jet from a high-aspect-ratio channel into a quiescent medium. For a rigid exit, with no leaflets at the channel exit, the measurements at a central plane show that the trailing jet in the present case is never detached from the vortex pair, and keeps feeding into the latter, unlike in the axisymmetric case. Passive flexibility is introduced in the form of rigid leaflets or flaps that are hinged at the exit of the channel, with the flaps initially parallel to the channel walls. The experimental arrangement closely approximates the limiting case of a free-to-rotate rigid flap with negligible structural stiffness, damping and flap inertia, as these limiting structural properties permit the largest flap openings. Using this arrangement, we start the flow and measure the flap kinematics and the vorticity fields for different flap lengths and piston velocity programs. The typical motion of the flaps involves a rapid opening and a subsequent more gradual return to its initial position, both of which occur when the piston is still moving. The initial opening of the flaps can be attributed to an excess pressure that develops in the channel when the flow starts, due to the acceleration that has to be imparted to the fluid slug between the flaps. In the case with flaps, two additional pairs of vortices are formed because of the motion of the flaps, leading to the ejection of a total of up to three vortex pairs from the hinged exit. The flaps' length (L-f) is found to significantly affect flap motions when plotted using the conventional time scale L/d, where L is the piston stroke and d is the channel width. However, with a newly defined time scale based on the flap length (L/L-f), we find a good collapse of all the measured flap motions irrespective of flap length and piston velocity for an impulsively started piston motion. The maximum opening angle in all these impulsive velocity program cases, irrespective of the flap length, is found to be close to 15 degrees. Even though the flap kinematics collapses well with L/L-f, there are differences in the distribution of the ejected vorticity even for the same L/L-f. Such a redistribution of vorticity can lead to important changes in the overall properties of the flow, and it gives us a better understanding of the importance of exit flexibility in such flows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the fracture behavior of magnesium single crystals is studied by conducting experiments with notched three point bend specimens of three crystallographic orientations. In the first and second orientations, the c-axis is along the normal to the flat surface of the notch, while in the third it is aligned with the notch front. For all the orientations, in situ electron back scattered diffraction observations made around the notch root show profuse tensile twinning of {10 (1) over bar2} type. Further, in the first two orientations basal and prismatic slip traces are identified from optical metallography. The width of the most prominent twin saturates at around 120-150 mu m, while twins continue to nucleate farther away to accommodate plastic deformation. In all the orientations, crack initiation occurs before the attainment of peak load and the crack grows stably along twin-matrix interface before deflecting at twin-twin intersections. Results show that profuse tensile twinning is an important energy dissipating mechanism that enhances the fracture toughness. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compliant mechanisms are elastic continua used to transmit or transform force and motion mechanically. The topology optimization methods developed for compliant mechanisms also give the shape for a chosen parameterization of the design domain with a fixed mesh. However, in these methods, the shapes of the flexible segments in the resulting optimal solutions are restricted either by the type or the resolution of the design parameterization. This limitation is overcome in this paper by focusing on optimizing the skeletal shape of the compliant segments in a given topology. It is accomplished by identifying such segments in the topology and representing them using Bezier curves. The vertices of the Bezier control polygon are used to parameterize the shape-design space. Uniform parameter steps of the Bezier curves naturally enable adaptive finite element discretization of the segments as their shapes change. Practical constraints such as avoiding intersections with other segments, self-intersections, and restrictions on the available space and material, are incorporated into the formulation. A multi-criteria function from our prior work is used as the objective. Analytical sensitivity analysis for the objective and constraints is presented and is used in the numerical optimization. Examples are included to illustrate the shape optimization method.