175 resultados para Reprensentation space


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The swirling colors of aurorae, familiar to many in polar communities, can occasionally be seen at middle latitudes in locations such as southern Canada and central Europe. But in rare instances, aurorae can even be seen in the tropics. On 6 February 1872, news of the sighting of one such aurora was carried by the Times of India newspaper. The aurora occurred on 4 February 1872 and, as noted, was also observed over the Middle East.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we explore an implementation of a high-throughput, streaming application on REDEFINE-v2, which is an enhancement of REDEFINE. REDEFINE is a polymorphic ASIC combining the flexibility of a programmable solution with the execution speed of an ASIC. In REDEFINE Compute Elements are arranged in an 8x8 grid connected via a Network on Chip (NoC) called RECONNECT, to realize the various macrofunctional blocks of an equivalent ASIC. For a 1024-FFT we carry out an application-architecture design space exploration by examining the various characterizations of Compute Elements in terms of the size of the instruction store. We further study the impact by using application specific, vectorized FUs. By setting up different partitions of the FFT algorithm for persistent execution on REDEFINE-v2, we derive the benefits of setting up pipelined execution for higher performance. The impact of the REDEFINE-v2 micro-architecture for any arbitrary N-point FFT (N > 4096) FFT is also analyzed. We report the various algorithm-architecture tradeoffs in terms of area and execution speed with that of an ASIC implementation. In addition we compare the performance gain with respect to a GPP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze e(+)e(-) -> gamma gamma, e(-)gamma -> e(-)gamma and gamma gamma -> e(+)e(-) processes within the Seiberg-Witten expanded noncommutative scenario using polarized beams. With unpolarized beams the leading order effects of non commutativity starts from second order in non commutative(NC) parameter i.e. O(Theta(2)), while with polarized beams these corrections appear at first order (O(Theta')) in cross section. The corrections in Compton case can probe the magnetic component(Theta(B)) while in Pair production and Pair annihilation probe the electric component((Theta) over right arrow (E)) of NC parameter. We include the effects of earth rotation in our analysis. This study is done by investigating the effects of non commutativity on different time averaged cross section observables. The results which also depends on the position of the collider, can provide clear and distinct signatures of the model testable at the International Linear Collider(ILC).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributed space time coding for wireless relay networks where the source, the destination and the relays have multiple antennas have been studied by Jing and Hassibi. In this set up, the transmit and the receive signals at different antennas of the same relay are processed and designed independently, even though the antennas are colocated. In this paper, a wireless relay network with single antenna at the source and the destination and two antennas at each of the R relays is considered. In the first phase of the two-phase transmission model, a T -length complex vector is transmitted from the source to all the relays. At each relay, the inphase and quadrature component vectors of the received complex vectors at the two antennas are interleaved before processing them. After processing, in the second phase, a T x 2R matrix codeword is transmitted to the destination. The collection of all such codewords is called Co-ordinate interleaved distributed space-time code (CIDSTC). Compared to the scheme proposed by Jing-Hassibi, for T ges AR, it is shown that while both the schemes give the same asymptotic diversity gain, the CIDSTC scheme gives additional asymptotic coding gain as well and that too at the cost of negligible increase in the processing complexity at the relays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A construction of a new family of distributed space time codes (DSTCs) having full diversity and low Maximum Likelihood (ML) decoding complexity is provided for the two phase based cooperative diversity protocols of Jing-Hassibi and the recently proposed Generalized Non-orthogonal Amplify and Forward (GNAF) protocol of Rajan et al. The salient feature of the proposed DSTCs is that they satisfy the extra constraints imposed by the protocols and are also four-group ML decodable which leads to significant reduction in ML decoding complexity compared to all existing DSTC constructions. Moreover these codes have uniform distribution of power among the relays as well as in time. Also, simulations results indicate that these codes perform better in comparison with the only known DSTC with the same rate and decoding complexity, namely the Coordinate Interleaved Orthogonal Design (CIOD). Furthermore, they perform very close to DSTCs from field extensions which have same rate but higher decoding complexity.