103 resultados para Replicon Rna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To a reasonable approximation, a secondary structures of RNA is determined by Watson-Crick pairing without pseudo-knots in such a way as to minimise the number of unpaired bases: We show that this minimal number is determined by the maximal conjugacy-invariant pseudo-norm on the free group on two generators subject to bounds on the generators. This allows us to construct lower bounds on the minimal number of unpaired bases by constructing conjugacy invariant pseudo-norms. We show that one such construction, based on isometric actions on metric spaces, gives a sharp lower bound. A major goal here is to formulate a purely mathematical question, based on considering orthogonal representations, which we believe is of some interest independent of its biological roots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the possible role of a conserved cis-acting element, the cryptic AUG, present in the 5' UTR of coxsackievirus B3 (CVB3) RNA. CVB3 5' UTR contains multiple AUG codons upstream of the initiator AUG, which are not used for the initiation of translation. The 48S ribosomal assembly takes place upstream of the cryptic AUG. We show here that mutation in the cryptic AUG results in reduced efficiency of translation mediated by the CVB3 IRES; mutation also reduces the interaction of mutant IRES with a well characterized IRES trans-acting factor, the human La protein. Furthermore, partial silencing of the La gene showed a decrease in IRES activity in the case of both the wild-type and mutant. We have demonstrated here that the interaction of the 48S ribosomal complex with mutant RNA was weaker compared with wild-type RNA by ribosome assembly analysis. We have also investigated by chemical and enzymic modifications the possible alteration in secondary structure in the mutant RNA. Results suggest that the secondary structure of mutant RNA was only marginally altered. Additionally, we have demonstrated by generating compensatory and non-specific mutations the specific function of the cryptic AUG in internal initiation. Results suggest that the effect of the cryptic AUG is specific and translation could not be rescued. However, a possibility of tertiary interaction of the cryptic AUG with other cis-acting elements cannot be ruled out. Taken together, it appears that the integrity of the cryptic AUG is important for efficient translation initiation by the CVB3 IRES RNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Groundnut bud necrosis virus belongs to the genus Tospovirus, infects a wide range of crop plants and causes severe losses. To understand the role of the nucleocapsid protein in the viral life cycle, the protein was overexpressed in E. coli and purified by Ni-NTA chromatography. The purified N protein was well folded and was predominantly alpha-helical. Deletion analysis revealed that the C-terminal unfolded region of the N protein was involved in RNA binding. Furthermore, the N protein could be phosphorylated in vitro by Nicotiana benthamiana plant sap and by purified recombinant kinases such as protein kinase CK2 and calcium-dependent protein kinase. This is the first report of phoshphorylation of a nucleocapsid protein in the family Bunyaviridae. The possible implications of the present findings for the viral life cycle are discussed.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because of its essential nature, each step of transcription, viz., initiation, elongation, and termination, is subjected to elaborate regulation. A number of transcription factors modulate the rates of transcription at these different steps, and several inhibitors shut down the process. Many modulators, including small molecules and proteinaceous inhibitors, bind the RNA polymerase (RNAP) secondary channel to control transcription. We describe here the first small protein inhibitor of transcription in Mycobacterium tuberculosis. Rv3788 is a homolog of the Gre factors that binds near the secondary channel of RNAP to inhibit transcription. The factor also affected the action of guanosine pentaphosphate (pppGpp) on transcription and abrogated Gre action, indicating its function in the modulation of the catalytic center of RNAP. Although it has a Gre factor-like domain organization with the conserved acidic residues in the N terminus and retains interaction with RNAP, the factor did not show any transcript cleavage stimulatory activity. Unlike Rv3788, another Gre homolog from Mycobacterium smegmatis, MSMEG_6292 did not exhibit transcription-inhibitory activities, hinting at the importance of the former in influencing the lifestyle of M. tuberculosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an effort to design efficient platform for siRNA delivery, we combine all atom classical and quantum simulations to study the binding of small interfering RNA (siRNA) by pristine single wall carbon nanotube (SWCNT). Our results show that siRNA strongly binds to SWCNT surface via unzipping its base-pairs and the propensity of unzipping increases with the increase in the diameter of the SWCNTs. The unzipping and subsequent wrapping events are initiated and driven by van der Waals interactions between the aromatic rings of siRNA nucleobases and the SWCNT surface. However, molecular dynamics (MD) simulations of double strand DNA (dsDNA) of the same sequence show that the dsDNA undergoes much less unzipping and wrapping on the SWCNT in the simulation time scale of 70 ns. This interesting difference is due to smaller interaction energy of thymidine of dsDNA with the SWCNT compared to that of uridine of siRNA, as calculated by dispersion corrected density functional theory (DFT) methods. After the optimal binding of siRNA to SWCNT, the complex is very stable which serves as one of the major mechanisms of siRNA delivery for biomedical applications. Since siRNA has to undergo unwinding process with the effect of RNA-induced silencing complex, our proposed delivery mechanism by SWCNT possesses potential advantages in achieving RNA interference. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3682780]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatitis C virus (HCV), a member of Flaviviridae, encoding a positive-sense single-stranded RNA translates by cap-independent mechanism using the internal ribosome entry site (IRES) present in the 5' UTR of the virus. The IRES has complex stem loop structures and is capable of recruiting the 40S ribosomal subunit in a factor-independent fashion. As the IRES sequence is highly conserved throughout the HCV genotypes and the translation is the first obligatory step of the HCV life cycle, the IRE'S-mediated translation, or more specifically, the ribosome HCV RNA interaction is an attractive target to design effective antivirals. This article will focus on the mechanism of the HCV IRES translation and the various ways in which the interaction of ribosome and IRES has been targeted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The widely conserved omega subunit encoded by rpoZ is the smallest subunit of Escherichia coli RNA polymerase (RNAP) but is dispensable for bacterial growth. Function of omega is known to be substituted by GroEL in omega-null strain, which thus does not exhibit a discernable phenotype. In this work, we report isolation of omega variants whose expression in vivo leads to a dominant lethal phenotype. Studies show that in contrast to omega, which is largely unstructured, omega mutants display substantial acquisition of secondary structure. By detailed study with one of the mutants, omega(6) bearing N60D substitution, the mechanism of lethality has been deciphered. Biochemical analysis reveals that omega(6) binds to beta ` subunit in vitro with greater affinity than that of omega. The reconstituted RNAP holoenzyme in the presence of omega(6) in vitro is defective in transcription initiation. Formation of a faulty RNAP in the presence of mutant omega results in death of the cell. Furthermore, lethality of omega(6) is relieved in cells expressing the rpoC2112 allele encoding beta ` (2112), a variant beta ` bearing Y457S substitution, immediately adjacent to the beta ` catalytic center. Our results suggest that the enhanced omega(6)-beta ` interaction may perturb the plasticity of the RNAP active center, implicating a role for omega and its flexible state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Wilms tumor 1 gene (WT1) can either repress or induce the expression of genes. Inconsistent with its tumor suppressor role, elevated WT1 levels have been observed in leukemia and solid tumors. WT1 has also been suggested to act as an oncogene by inducing the expression of MYC and BCL-2. However, these are only the correlational studies, and no functional study has been performed to date. Consistent with its tumor suppressor role, CDC73 binds to RNA polymerase II as part of a PAF1 transcriptional regulatory complex and causes transcriptional repression of oncogenes MYC and CCND1. It also represses beta-catenin-mediated transcription. Based on the reduced level of CDC73 in oral squamous cell carcinoma (OSCC) samples in the absence of loss-of-heterozygosity, promoter methylation, and mutations, we speculated that an inhibitory transcription factor is regulating its expression. The bioinformatics analysis predicted WT1 as an inhibitory transcription factor to regulate the CDC73 level. Our results showed that overexpression of WT1 decreased CDC73 levels and promoted proliferation of OSCC cells. ChIP and EMSA results demonstrated binding of WT1 to the CDC73 promoter. The 5-azacytidine treatment of OSCC cells led to an up-regulation of WT1 with a concomitant down-regulation of CDC73, further suggesting regulation of CDC73 by WT1. Exogenous CDC73 attenuated the protumorigenic activity of WT1 by apoptosis induction. An inverse correlation between expression levels of CDC73 and WT1 was observed in OSCC samples. These observations indicated that WT1 functions as an oncogene by repressing the expression of CDC73 in OSCC. We suggest that targeting WT1 could be a therapeutic strategy for cancer, including OSCC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flaviviral RNA-dependent RNA polymerases (RdRps) initiate replication of the single-stranded RNA genome in the absence of a primer. The template sequence 5'-CU-3' at the 3'-end of the flaviviral genome is highly conserved. Surprisingly, flaviviral RdRps require high concentrations of the second incoming nucleotide GTP to catalyze de novo template-dependent RNA synthesis. We show that GTP stimulates de novo RNA synthesis by RdRp from Japanese encephalitis virus (jRdRp) also. Crystal structures of jRdRp complexed with GTP and ATP provide a basis for specific recognition of GTP. Comparison of the jRdRp(GTP) structure with other viral RdRp-GTP structures shows that GTP binds jRdRp in a novel conformation. Apo-jRdRp structure suggests that the conserved motif F of jRdRp occupies multiple conformations in absence of GTP. Motif F becomes ordered on GTP binding and occludes the nucleotide triphosphate entry tunnel. Mutational analysis of key residues that interact with GTP evinces that the jRdRp(GTP) structure represents a novel pre-initiation state. Also, binding studies show that GTP binding reduces affinity of RdRp for RNA, but the presence of the catalytic Mn2+ ion abolishes this inhibition. Collectively, these observations suggest that the observed pre-initiation state may serve as a check-point to prevent erroneous template-independent RNA synthesis by jRdRp during initiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cryptococcus neoformans is a pathogenic basidiomycetous yeast responsible for more than 600,000 deaths each year. It occurs as two serotypes (A and D) representing two varieties (i.e. grubii and neoformans, respectively). Here, we sequenced the genome and performed an RNA-Seq-based analysis of the C. neoformans var. grubii transcriptome structure. We determined the chromosomal locations, analyzed the sequence/structural features of the centromeres, and identified origins of replication. The genome was annotated based on automated and manual curation. More than 40,000 introns populating more than 99% of the expressed genes were identified. Although most of these introns are located in the coding DNA sequences (CDS), over 2,000 introns in the untranslated regions (UTRs) were also identified. Poly(A)-containing reads were employed to locate the polyadenylation sites of more than 80% of the genes. Examination of the sequences around these sites revealed a new poly(A)-site-associated motif (AUGHAH). In addition, 1,197 miscRNAs were identified. These miscRNAs can be spliced and/or polyadenylated, but do not appear to have obvious coding capacities. Finally, this genome sequence enabled a comparative analysis of strain H99 variants obtained after laboratory passage. The spectrum of mutations identified provides insights into the genetics underlying the micro-evolution of a laboratory strain, and identifies mutations involved in stress responses, mating efficiency, and virulence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A convenient protocol is developed for the synthesis of 3 `-N-(fluorenylmethoxycarbonyl)-amino]-5 `-carboxymethyl derivatives of all four natural ribonucleosides from cheap chiral pool compound glucose. Synthesis of fully amide-linked RNA analogues of small oligonucleotides containing, for the first time, all four nucleoside amino acids using standard solid phase Fmoc-chemistry is described. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two mechanisms - factor independent and dependent termination - ensure the completion of RNA synthesis in eubacteria. Factor-dependent mechanism relies on the Rho protein to terminate transcription by interacting with RNA polymerase. Although well studied in Escherichia coli, the properties of the Rho homologs from most bacteria are not known. The rho gene is unusually large in genus Mycobacterium and other members of actinobacteria, having,150 additional residues towards the amino terminal end. We describe the distinct properties of Rho from Mycobacterium tuberculosis. It is an NTPase with a preference for purine nucleoside triphosphates with kinetic properties different from E. coli homolog and an ability to use various RNA substrates. The N-terminal subdomain of MtbRho can bind to RNA by itself, and appears to contribute to the interaction of the termination factor with RNAs. Furthermore, the interaction with RNA induces changes in conformation and oligomerization of MtbRho.