491 resultados para Regionalist novel
Resumo:
Achieving stabilization of telomeric DNA in G-quadruplex conformation by Various organic compounds has been an important goal for the medicinal chemists seeking to develop new anticancer agents. Several compounds are known to stabilize G-quadruplexes. However, relatively few are known to induce their formation and/or alter the topology, of the preformed quadruplex DNA. Herein, four compounds having the 1,3-phenylene-bis(piperazinyl benzimidazole) unit as a basic skeleton have been synthesized, and their interactions with the 24-mer telomeric DNA sequences from Tetrahymena thermophilia d(T(2)G(4))(4) have been investigated using high-resolution techniques Such as circular dichroism (CD) spectropolarimetry, CD melting, emission spectroscopy, and polyacrylamide gel electrophoresis. The data obtained, in the presence of one of three ions (Li+, Na+, or K+), indicate that all the new compounds have a high affinity for G-quadruplex DNA, and the strength of the binding with G-quadruplex depends on (1) phenyl ring substitution, (ii) the piperazinyl side chain, and (iii) the type of monovalent cation present in the buffer. Results further Suggest that these compounds are able to abet the conversion of the Intramolecular quadruplex into parallel stranded intermolecular G-quadruplex DNA. Notably, these compounds are also capable of inducing and stabilizing the parallel stranded quadruplex from randomly structured DNA in the absence of any stabilizing cation. The kinetics of the structural changes Induced by these compounds could be followed by recording the changes in the CD signal as a function of time. The implications of the findings mentioned above are discussed in this paper.
Resumo:
Unlike the invertases from the mesophilic fungi and yeasts, invertase from a thermophilic fungus,Thermomyces lanuginosus,was unusually unstable bothin vivoandin vitro.The following observations suggested that the unstable nature of the enzyme activity in the cell-free extracts was due to the oxidation of the cysteine residue(s) in the enzyme molecule: (a) the addition of dithiothreitol or reduced glutathione stabilized invertase activity during storage of the extracts and also revived enzyme activity in the extracts which had become inactive with time; (b)N-ethylmaleimide, iodoacetamide, oxidized glutathione, cystine, or oxidized coenzyme A-inactivated invertase; (c) invertase activity was low when the ratio reduced/oxidized glutathione was lower and high when this ratio was higher, suggesting regulation of the enzyme by thiol/disulfide exchange reaction. In contrast to the activation of invertase by the thiol compounds and its inactivation by the disulfides in the cell-free extracts, the purified enzyme did not respond to these compounds. Following its inactivation, the purified enzyme required a helper protein in addition to dithiothreitol for maximal activation. A cellular protein was identified that promoted activation of invertase by dithiothreitol and it was called “PRIA” for theprotein which helps inrestoringinvertaseactivity. The revival of enzyme activity was due to the conversion of the inactive invertase molecules into an active form. A model is presented to explain the modulation of invertase activity by the thiol compounds and the disulfides, both in the crude cell-free extracts and in the purified preparations. The requirement of free sulfhydryl group(s) for the enzyme activity and, furthermore, the reciprocal effects of the thiols and the disulfides on invertase activity have not been reported for invertase from any other source. The finding of a novel invertase which shows a distinct mode of regulation demonstrates the diversity in an enzyme that has figured prominently in the development of biochemistry.
Resumo:
Alcaligenes eutrophus utilizing nerolidol, a sesquiterpene alcohol,as the sole source of carbon contains an inducible NAD(P)+-linked secondary alcohol dehydrogenase (SADH). The enzyme was purified to homogeneity by a combination of salt precipitation, ion exchange and affinity matri chromatographies. The apparent molecular mass of the enzyme was estimated to be 139 KDa with four identical subunits of 38.5 KDa. The enzyme carried out both oxidation and reduction reactions. At pH 5.5, enzyme catalyzed the stereospecific reduction of prochiral ketones to secondary alcohols. The pH optimum for the oxidation reaction was 9.5. NADP+ and NADPH were respectively preferred over NAD+ and NADH for oxidation and reduction reactions. Some of the properties of this enzyme were found to be significantly different from those thus far described.
Resumo:
Two new coordination polymers [Cu(L-1)(2)](n)(ClO4)(n)center dot 2nH(2)O (1), [Cu(L-2)(2)](n)(ClO4)(n)center dot 2nH(2)O (2) of polydentate imine/pyridyl ligands, L-1 and L-2 with Cu(I) ion have been synthesized and characterized by single crystal X-ray diffraction studies, elemental analyses, IR' UV-vis and NMR spectroscopy. They represent 3-dimensional, sixfold interpenetrating diamondoid network structures having large pores of dimension, 35 x 21 angstrom(2) in 1 and 38 x 19 angstrom(2) in 2, respectively.
Resumo:
Deoxyhypusine synthase, an NAD(+)-dependent enzyme, catalyzes the first step in the post-translational synthesis of an unusual amino acid, hypusine (N-epsilon-(4-amino-2-hydroxybutyl)lysine), in the eukaryotic initiation factor 5A precursor protein. Two putative deoxyhypusine synthase (DHS) sequences have been identified in the Leishmania donovani genome, which are present on chromosomes 20: DHSL20 (DHS-like gene from chromosome 20) and DHS34 (DHS from chromosome 34). Although both sequences exhibit an overall conservation of key residues, DHSL20 protein lacks a critical lysine residue, and the recombinant protein showed no DHS activity in vitro. However, DHS34 contains the critical lysine residue, and the recombinant DHS34 effectively catalyzed deoxyhypusine synthesis. Furthermore, in vivo labeling confirmed that hypusination of eukaryotic initiation factor 5A occurs in intact Leishmania parasites. Interestingly, the DHS34 is much longer, with 601 amino acids, compared with the human DHS enzyme (369 amino acids) and contains several unique insertions. To study the physiological role of DHS34 in Leishmania, gene deletion mutations were attempted via targeted gene replacement. However, chromosomal null mutants of DHS34 could only be obtained in the presence of a DHS34-containing episome. The present data provide evidence that DHS34 is essential for L. donovani and that structural differences in the human and leishmanial DHS enzyme may be exploited for designing selective inhibitors against the parasite.
Resumo:
Salmonella has evolved several strategies to counteract intracellular microbicidal agents like reactive oxygen and nitrogen species. However, it is not yet clear how Salmonella escapes lysosomal degradation. Some studies have demonstrated that Salmonella can inhibit phagolysosomal fusion, whereas other reports have shown that the Salmonella-containing vacuole (SCV) fuses/interacts with lysosomes. Here, we have addressed this issue from a different perspective by investigating if the infected host cell has a sufficient quantity of lysosomes to target Salmonella. Our results suggest that SCVs divide along with Salmonella, resulting in a single bacterium per SCV. As a consequence, the SCV load per cell increases with the division of Salmonella inside the host cell. This demands more investment from the host cell to counteract Salmonella. Interestingly, we observed that Salmonella infection decreases the number of acidic lysosomes inside the host cell both in vitro and in vivo. These events potentially result in a condition in which an infected cell is left with insufficient acidic lysosomes to target the increasing number of SCVs, which favors the survival and proliferation of Salmonella inside the host cell.
Resumo:
DNA intercalators are one of the most commonly used chemotherapeutic agents. Novel intercalating compounds of pyrimido[4',5':4,5]selenolo(2,3-b)quinoline series having a butylamino or piperazino group at fourth position (BPSQ and PPSQ, respectively) are studied. Our results showed that BPSQ induced cytotoxicity whereas PPSQ was cytostatic. The cytotoxicity induced by BPSQ was concentration- and time-dependent. Cell cycle analysis and tritiated thymidine assay revealed that BPSQ affects the cell cycle progression by arresting at S phase. The absence of p-histone H3 and reduction in the levels of PCNA in the cells treated with BPSQ further confirmed the cell cycle arrest. Further, annexin V staining, DNA fragmentation, nuclear condensation and changes in the expression levels of BCL2/BAD confirmed the activation of apoptosis. Activation of caspase 8 and lack of cleavage of caspase 9, caspase 3 and PARP suggest the possibility of BPSQ triggering extrinsic pathway for induction of apoptosis, which is discussed. Hence, we have identified a novel compound which would have clinical relevance in cancer chemotherapeutics.
Resumo:
Open reading frame (ORF) 2a of Sesbania mosaic virus (SeMV) codes for polyprotein 2a (Membrane anchor-protease-VPg-P10-P8). The C-terminal domain of SeMV polyprotein 2a was cloned, expressed and purified in order to functionally characterize it. The protein of size 8 kDa (P8) domain, like viral protein genome linked (VPg), was found to be natively unfolded and could bind to nucleic acids.Interestingly, P10-P8 but not P8 showed a novel Mg2+ dependent ATPase activity that was inhibited in the presence of poly A. In the absence of P8, the ATPase activity of the protein of size 10 kDa (P10) domain was reduced suggesting that the natively unfolded P8 domain influenced the P10 ATPase.
Who really ate the fruit? A novel approach to camera trapping for quantifying frugivory by ruminants
Resumo:
Tropical forest ruminants disperse several plants; yet, their effectiveness as seed dispersers is not systematically quantified. Information on frequency and extent of frugivory by ruminants is lacking. Techniques such as tree watches or fruit traps adapted from avian frugivore studies are not suitable to study terrestrial frugivores, and conventional camera traps provide little quantitative information. We used a novel time-delay camera-trap technique to assess the effectiveness of ruminants as seed dispersers for Phyllanthus emblica at Mudumalai, southern India. After being triggered by animal movement, cameras were programmed to take pictures every 2 min for the next 6 min, yielding a sequence of four pictures. Actual frugivores were differentiated from mere visitors, who did not consume fruit, by comparing the number of fruit remaining across the time-delay photograph sequence. During a 2-year study using this technique, we found that six terrestrial mammals consumed fallen P. emblica fruit. Additionally, seven mammals and one bird species visited fruiting trees but did not consume fallen fruit. Two ruminants, the Indian chevrotain Moschiola indica and chital Axis axis, were P. emblica's most frequent frugivores and they accounted for over 95% of fruit removal, while murid rodents accounted for less than 1%. Plants like P. emblica that are dispersed mainly by large mammalian frugivores are likely to have limited ability to migrate across fragmented landscapes in response to rapidly changing climates. We hope that more quantitative information on ruminant frugivory will become available with a wider application of our time-delay camera-trap technique.
Resumo:
The type III secretion system (T3SS) encoded by Salmonella Pathogenicity Island 2 (SPI2) is essential for virulence and intracellular proliferation of Salmonella enterica. We have previously identified SPI2-encoded proteins that are secreted and function as a translocon for the injection of effector proteins. Here, we describe the formation of a novel SPI2-dependent appendage structure in vitro as well as on the surface of bacteria that reside inside a vacuole of infected host cells. In contrast to the T3SS of other pathogens, the translocon encoded by SPI2 is only present singly or in few copies at one pole of the bacterial cell. Under in vitro conditions, appendages are composed of a filamentous needle-like structure with a diameter of 10 nm that was sheathed with secreted protein. The formation of the appendage in vitro is dependent on acidic media conditions. We analyzed SPI2-encoded appendages in infected cells and observed that acidic vacuolar pH was not required for induction of SPI2 gene expression, but was essential for the assembly of these structures and their function as translocon for delivery of effector proteins.
Resumo:
The synthesis of the octapeptide, benzyloxycarbonyl-(-aminoisobutyryl-L-prolyl)4-methyl ester [Z-(Aib-Pro)4-OMe] and an analysis of its solution conformation is reported. The octapeptide is shown to possess three strong intramolecular hydrogen bonds on the basis of studies of the solvent and temperature dependence of NH chemical shifts and rates of hydrogen-deuterium exchange. 13C studies are consistent with a structure involving only trans Aib-Pro bonds, while ir experiments support a hydrogen-bonded conformation. The Aib 3, 5, and 7 NH groups are shown to participate in hydrogen bonding. A 310 helical conformation compatible with the spectroscopic data is suggested. The proposed conformation consists of three type III -turns with Aib and Pro at the corners and stabilized by 4 1 intramolecular hydrogen bonds.
Resumo:
In this paper, a new technique is presented to increase the bandwidth for a single stage amplifier. Usually, -3 dB bandwidth of single stage amplifier is in few MHz. High output impedance and subsequent capacitive loading decrease the bandwidth of amplifier. The presented technique uses a load which itself acts as bandwidth enhancer. This high speed amplifier is designed on 180 nm CMOS technology, operates at 2.5 V power supply. This amplifier is succeeded by an output buffer to achieve a better linearity, high output swing and required output impedance for matching.
Resumo:
Two binuclear copper(II) complexes one (complex 1) with a macrocyclic ligand (H(2)L1) and other (complex 2) with a macroacyclic (end-off type) compartmental ligand (HL2) have been synthesized from single pot template synthesis involving copper(II) nitrate, 1,2diaminoethane, 4-methyl-2,6-diformylphenol, and sodium azide. Structure analysis of complex I reveals that there are actually two half molecules present in the asymmetric unit and so two complexes (molecule-I and molecule-II) are present in unit cell, although they show slight differences. The two Cu(II) centers are in distorted square pyramidal coordination environment with two endogenous phenoxo bridges provided by the phenolate of H(2)L1 I having Cu-Cu separations of 2.9133(10) angstrom and 2.9103(10) in the two molecules. In complex 2 the coordination environments around two Cu(II) centers are asymmetric, Cu1 is in distorted square pyramidal environment whereas, the coordination environment around Cu2 is distorted octahedral. The two Cu(II) centers in complex 2 are connected by two different kinds of bridges, one is endogenous phenoxo bridge provided by the phenolate of the ligand HL2 and the other is exogenous azido bridge (mu-(1),(l) type) with Cu-Cu distance of 3.032(10) angstrom. Variable temperature magnetic studies show that two Cu(II) centers in both the complexes are strongly antiferromagnetically coupled with J = -625 +/- 5 cm(-1) and J = -188.6 +/- 1cm(-1) for complex 1 and 2, respectively. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Blue [{Cu(2,2'-bipy)(2)}(2){alpha-SiW12O40}] (bipy = bipyridyl) (1) and pale yellow [Mn(2,2'-bipy)(3)](2)[alpha-SiW12O40] (2) have been synthesized hydrothermally and characterized by IR spectroscopy and single crystal X-ray structure analysis. In 1, the [alpha-SiW12O40](4-) ion acts as a bridge between the two [{Cu(2,2'-bipy)(2)](2+) moieties via coordination through the terminal oxygen atoms, while in 2, the [Mn(2,2'-bipy)(3)](2+) ion balances the charge on the polyoxo anion without forming any covalent bond. To the best of our knowledge, this is the first example of transition metal-mediated transformation of [alpha-SiW9O34](10-) to [alpha-SiW12O40](4-).