87 resultados para Reconstruction kernel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been shown that iterative re-weighted strategies will often improve the performance of many sparse reconstruction algorithms. However, these strategies are algorithm dependent and cannot be easily extended for an arbitrary sparse reconstruction algorithm. In this paper, we propose a general iterative framework and a novel algorithm which iteratively enhance the performance of any given arbitrary sparse reconstruction algorithm. We theoretically analyze the proposed method using restricted isometry property and derive sufficient conditions for convergence and performance improvement. We also evaluate the performance of the proposed method using numerical experiments with both synthetic and real-world data. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a real-time imaging method for two-color wide-field fluorescence microscopy using a combined approach that integrates multi-spectral imaging and Bayesian image reconstruction technique. To enable simultaneous observation of two dyes (primary and secondary), we exploit their spectral properties that allow parallel recording in both the channels. The key advantage of this technique is the use of a single wavelength of light to excite both the primary dye and the secondary dye. The primary and secondary dyes respectively give rise to fluorescence and bleed-through signal, which after normalization were merged to obtain two-color 3D images. To realize real-time imaging, we employed maximum likelihood (ML) and maximum a posteriori (MAP) techniques on a high-performance computing platform (GPU). The results show two-fold improvement in contrast while the signal-to-background ratio (SBR) is improved by a factor of 4. We report a speed boost of 52 and 350 for 2D and 3D images respectively. Using this system, we have studied the real-time protein aggregation in yeast cells and HeLa cells that exhibits dot-like protein distribution. The proposed technique has the ability to temporally resolve rapidly occurring biological events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An iterative image reconstruction technique employing B-Spline potential function in a Bayesian framework is proposed for fluorescence microscopy images. B-splines are piecewise polynomials with smooth transition, compact support and are the shortest polynomial splines. Incorporation of the B-spline potential function in the maximum-a-posteriori reconstruction technique resulted in improved contrast, enhanced resolution and substantial background reduction. The proposed technique is validated on simulated data as well as on the images acquired from fluorescence microscopes (widefield, confocal laser scanning fluorescence and super-resolution 4Pi microscopy). A comparative study of the proposed technique with the state-of-art maximum likelihood (ML) and maximum-a-posteriori (MAP) with quadratic potential function shows its superiority over the others. B-Spline MAP technique can find applications in several imaging modalities of fluorescence microscopy like selective plane illumination microscopy, localization microscopy and STED. (C) 2015 Author(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid reconstruction of multidimensional image is crucial for enabling real-time 3D fluorescence imaging. This becomes a key factor for imaging rapidly occurring events in the cellular environment. To facilitate real-time imaging, we have developed a graphics processing unit (GPU) based real-time maximum a-posteriori (MAP) image reconstruction system. The parallel processing capability of GPU device that consists of a large number of tiny processing cores and the adaptability of image reconstruction algorithm to parallel processing (that employ multiple independent computing modules called threads) results in high temporal resolution. Moreover, the proposed quadratic potential based MAP algorithm effectively deconvolves the images as well as suppresses the noise. The multi-node multi-threaded GPU and the Compute Unified Device Architecture (CUDA) efficiently execute the iterative image reconstruction algorithm that is similar to 200-fold faster (for large dataset) when compared to existing CPU based systems. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viral capsids derived from an icosahedral plant virus widely used in physical and nanotechnological investigations were fully dissociated into dimers by a rapid change of pH. The process was probed in vitro at high spatiotemporal resolution by time-resolved small-angle X-ray scattering using a high brilliance synchrotron source. A powerful custom-made global fitting algorithm allowed us to reconstruct the most likely pathway parametrized by a set of stoichiometric coefficients and to determine the shape of two successive intermediates by ab initio calculations. None of these two unexpected intermediates was previously identified in self-assembly experiments, which suggests that the disassembly pathway is not a mirror image of the assembly pathway. These findings shed new light on the mechanisms and the reversibility of the assembly/disassembly of natural and synthetic virus-based systems. They also demonstrate that both the structure and dynamics of an increasing number of intermediate species become accessible to experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a multilayered specimen, the back-scattered signal in frequency-domain optical-coherence tomography (FDOCT) is expressible as a sum of cosines, each corresponding to a change of refractive index in the specimen. Each of the cosines represent a peak in the reconstructed tomogram. We consider a truncated cosine series representation of the signal, with the constraint that the coefficients in the basis expansion be sparse. An l(2) (sum of squared errors) data error is considered with an l(1) (summation of absolute values) constraint on the coefficients. The optimization problem is solved using Weiszfeld's iteratively reweighted least squares (IRLS) algorithm. On real FDOCT data, improved results are obtained over the standard reconstruction technique with lower levels of background measurement noise and artifacts due to a strong l(1) penalty. The previous sparse tomogram reconstruction techniques in the literature proposed collecting sparse samples, necessitating a change in the data capturing process conventionally used in FDOCT. The IRLS-based method proposed in this paper does not suffer from this drawback.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a depth-guided photometric 3D reconstruction method that works solely with a depth camera like the Kinect. Existing methods that fuse depth with normal estimates use an external RGB camera to obtain photometric information and treat the depth camera as a black box that provides a low quality depth estimate. Our contribution to such methods are two fold. Firstly, instead of using an extra RGB camera, we use the infra-red (IR) camera of the depth camera system itself to directly obtain high resolution photometric information. We believe that ours is the first method to use an IR depth camera system in this manner. Secondly, photometric methods applied to complex objects result in numerous holes in the reconstructed surface due to shadows and self-occlusions. To mitigate this problem, we develop a simple and effective multiview reconstruction approach that fuses depth and normal information from multiple viewpoints to build a complete, consistent and accurate 3D surface representation. We demonstrate the efficacy of our method to generate high quality 3D surface reconstructions for some complex 3D figurines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Support vector machines (SVM) are a popular class of supervised models in machine learning. The associated compute intensive learning algorithm limits their use in real-time applications. This paper presents a fully scalable architecture of a coprocessor, which can compute multiple rows of the kernel matrix in parallel. Further, we propose an extended variant of the popular decomposition technique, sequential minimal optimization, which we call hybrid working set (HWS) algorithm, to effectively utilize the benefits of cached kernel columns and the parallel computational power of the coprocessor. The coprocessor is implemented on Xilinx Virtex 7 field-programmable gate array-based VC707 board and achieves a speedup of upto 25x for kernel computation over single threaded computation on Intel Core i5. An application speedup of upto 15x over software implementation of LIBSVM and speedup of upto 23x over SVMLight is achieved using the HWS algorithm in unison with the coprocessor. The reduction in the number of iterations and sensitivity of the optimization time to variation in cache size using the HWS algorithm are also shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose data acquisition from continuous-time signals belonging to the class of real-valued trigonometric polynomials using an event-triggered sampling paradigm. The sampling schemes proposed are: level crossing (LC), close to extrema LC, and extrema sampling. Analysis of robustness of these schemes to jitter, and bandpass additive gaussian noise is presented. In general these sampling schemes will result in non-uniformly spaced sample instants. We address the issue of signal reconstruction from the acquired data-set by imposing structure of sparsity on the signal model to circumvent the problem of gap and density constraints. The recovery performance is contrasted amongst the various schemes and with random sampling scheme. In the proposed approach, both sampling and reconstruction are non-linear operations, and in contrast to random sampling methodologies proposed in compressive sensing these techniques may be implemented in practice with low-power circuitry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the problem of phase retrieval from Fourier transform magnitude spectrum for continuous-time signals that lie in a shift-invariant space spanned by integer shifts of a generator kernel. The phase retrieval problem for such signals is formulated as one of reconstructing the combining coefficients in the shift-invariant basis expansion. We develop sufficient conditions on the coefficients and the bases to guarantee exact phase retrieval, by which we mean reconstruction up to a global phase factor. We present a new class of discrete-domain signals that are not necessarily minimum-phase, but allow for exact phase retrieval from their Fourier magnitude spectra. We also establish Hilbert transform relations between log-magnitude and phase spectra for this class of discrete signals. It turns out that the corresponding continuous-domain counterparts need not satisfy a Hilbert transform relation; notwithstanding, the continuous-domain signals can be reconstructed from their Fourier magnitude spectra. We validate the reconstruction guarantees through simulations for some important classes of signals such as bandlimited signals and piecewise-smooth signals. We also present an application of the proposed phase retrieval technique for artifact-free signal reconstruction in frequency-domain optical-coherence tomography (FDOCT).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: A prior image based temporally constrained reconstruction ( PITCR) algorithm was developed for obtaining accurate temperature maps having better volume coverage, and spatial, and temporal resolution than other algorithms for highly undersampled data in magnetic resonance (MR) thermometry. Methods: The proposed PITCR approach is an algorithm that gives weight to the prior image and performs accurate reconstruction in a dynamic imaging environment. The PITCR method is compared with the temporally constrained reconstruction (TCR) algorithm using pork muscle data. Results: The PITCR method provides superior performance compared to the TCR approach with highly undersampled data. The proposed approach is computationally expensive compared to the TCR approach, but this could be overcome by the advantage of reconstructing with fewer measurements. In the case of reconstruction of temperature maps from 16% of fully sampled data, the PITCR approach was 1.57x slower compared to the TCR approach, while the root mean square error using PITCR is 0.784 compared to 2.815 with the TCR scheme. Conclusions: The PITCR approach is able to perform more accurate reconstructions of temperature maps compared to the TCR approach with highly undersampled data in MR guided high intensity focused ultrasound. (C) 2015 American Association of Physicists in Medicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Helmke et al. have recently given a formula for the number of reachable pairs of matrices over a finite field. We give a new and elementary proof of the same formula by solving the equivalent problem of determining the number of so called zero kernel pairs over a finite field. We show that the problem is, equivalent to certain other enumeration problems and outline a connection with some recent results of Guo and Yang on the natural density of rectangular unimodular matrices over F-qx]. We also propose a new conjecture on the density of unimodular matrix polynomials. (C) 2016 Elsevier Inc. All rights reserved.