117 resultados para Reason


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study reports the activity of ionic substituted bimetallic Cu-Ni-modified ceria and Cu-Fe-modified ceria catalysts for low-temperature water gas shift (WGS) reaction. The catalysts were synthesized in nano-crystalline size by a sonochemical method and characterized by XRD, TEM, XPS, TPR and BET surface analyzer techniques. Due to the ionic substitution of these aliovalent base metals, lattice oxygen in CeO2 is activated and these catalysts show high activity for WGS at low temperature. An increase in the reducibility and oxygen storage capacity of bimetallic substituted CeO2, as evidenced by H-2-TPR experiments, is the primary reason for the higher activity towards WGS reaction. In the absence of feed CO2 and H-2, 100% conversion of CO with 100% H-2 selectivity was observed at 320 degrees C and 380 degrees C, for Cu-Ni-modified ceria and Cu-Fe-modified ceria catalysts. Notably, in the presence of feed H2O. a reverse WGS reaction does not occur over these ceria modified catalysts. A redox reaction mechanism, involving oxidation of CO adsorbed on the metal was developed to correlate the experimental data and determine kinetic parameters. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Othman et al. (Intermetallics 2012;22:1-6) recently published a manuscript on ``Effects of current density on the formation and microstructure of Sn-9Zn, Sn-8Zn-3Bi and Sn-3Ag-0.5Cu solder joints''. We found problems in calculation of diffusion parameters. Even the comment on the formation of Cu5Zn8 instead of Cu6Sn5 is not correct. In this comment, we have explained the correct procedure to calculate the diffusion coefficients. Further, we have also explained the reason for the formation of Cu5Zn8 instead of Cu6Sn5 in the Cu/Sn-9Zn system. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a detailed study of a 3+2+1] cascade cyclisation of vinylcyclopropanes (VCP) catalysed by a bromenium species (Brd+?Xd-) generated in situ, which results in the synthesis of chiral bicyclic amidines in a tandem one-pot operation. The formation of amidines involves the ring-opening of VCPs with Br?X, followed by a Ritter-type reaction with chloramine-T and a tandem cyclisation. The reaction has been further extended to vinylcyclobutane systems and involves a 4+2+1] cascade cyclisation with the same reagents. The versatility of the methodology has been demonstrated by careful choice of VCPs and VCBs to yield bicyclo4.3.0]-, -4.3.1]- and -4.4.0]amidines in enantiomerically pure form. On the basis of the experimental observations and DFT calculations, a reasonable mechanism has been put forth to account for the formation of the products and the observed stereoselectivity. We propose the existence of a p-stabilised homoallylic carbocation at the cyclopropane carbon as the reason for high stereoselectivity. DFT studies at B3LYP/6-311+G** and M06-2X/6-31+G* levels of theory in gas-phase calculations suggest the ring-opening of VCP is initiated at the p-complex stage (between the double bond and Br?X). This can be clearly perceived from the solution-phase (acetonitrile) calculations using the polarisable continuum model (PCM) solvation model, from which the extent of the ring opening of VCP was found to be noticeably high. Studies also show that the formation of zero-bridge bicyclic amidines is favoured over other bridged bicyclic amidines. The energetics of competing reaction pathways is compared to explain the product selectivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ce0.88Si0.1Pt0.02O2-d and Ce0.88Al0.1Pt0.02O2-d catalysts were synthesized by using a low-temperature sonochemical method and characterized by using XRD, TEM, XPS, FTIR, and BET surface analyzer. The catalytic activities of these compounds were investigated for the watergas shift reaction in the temperature range of 140-440 degrees C. The substitution of Si in Ce0.98Pt0.02O2-d increased the releasing capacity of lattice oxygen, whereas the substitution of Al decreased the reducibility of Ce0.98Pt0.02O2-d, as evidenced by hydrogen temperature-programmed reduction studies. However, both the catalysts showed a considerable improvement in terms of activity and stability compared to Ce0.98Pt0.02O2-d. The combined activity measurement and characterization results suggest that the increase in the oxygen vacancy, which acts as a dissociation center for water, is the primary reason for the improvement in the activity of modified Ce0.98Pt0.02O2-d. Both the catalysts are 100?% selective toward H2 production, and approximately 99?% conversion of CO to CO2 was observed at 260 and 270 degrees C for Ce0.88Si0.1Pt0.02O2-d and Ce0.88Al0.1Pt0.02O2-d, respectively. These catalysts do not deactivate during the daily startup/shutdown operations and are sustainable even after prolonged reaction. Notably, these catalysts do not require any pretreatment or activation during startup/shutdown operations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here, we report the ZnO/poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) based photodetectors that can response to ultraviolet as well as visible light. The temporal response of the heterostructures for various excitations in the ultraviolet (UV) and visible range are performed. The time constants are found to be excitation-dependent, the response to visible light is better as compared to UV. The reason behind the better response to UV light is the high level of defects present in ZnO as confirmed by the photoluminescence (PL) measurements. This is corroborated by the time resolved fluorescence (TRF) measurements which provides sufficient information behind the slow response time under the UV excitations. The possible explanation being the non-radiative recombinations occurring due to the traps or impurities present in the film which slows down the photoresponse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The correlation of genetic distances between pairs of protein sequence alignments has been used to infer protein-protein interactions. It has been suggested that these correlations are based on the signal of co-evolution between interacting proteins. However, although mutations in different proteins associated with maintaining an interaction clearly occur (particularly in binding interfaces and neighbourhoods), many other factors contribute to correlated rates of sequence evolution. Proteins in the same genome are usually linked by shared evolutionary history and so it would be expected that there would be topological similarities in their phylogenetic trees, whether they are interacting or not. For this reason the underlying species tree is often corrected for. Moreover processes such as expression level, are known to effect evolutionary rates. However, it has been argued that the correlated rates of evolution used to predict protein interaction explicitly includes shared evolutionary history; here we test this hypothesis. Results: In order to identify the evolutionary mechanisms giving rise to the correlations between interaction proteins, we use phylogenetic methods to distinguish similarities in tree topologies from similarities in genetic distances. We use a range of datasets of interacting and non-interacting proteins from Saccharomyces cerevisiae. We find that the signal of correlated evolution between interacting proteins is predominantly a result of shared evolutionary rates, rather than similarities in tree topology, independent of evolutionary divergence. Conclusions: Since interacting proteins do not have tree topologies that are more similar than the control group of non-interacting proteins, it is likely that coevolution does not contribute much to, if any, of the observed correlations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate the activity of Ti0.84Pt0.01Fe0.15O2-delta and Ti0.73Pd0.02Fe0.25O2-delta catalysts towards the CO oxidation and water gas shift (VMS) reaction. Both the catalysts were synthesized in the nano crystalline form by a low temperature sonochemical method and characterized by different techniques such as XRD, FT-Raman, TEM, FT-IR, XPS and BET surface analyzer. H-2-TPR results corroborate the intimate contact between noble metal and Fe ions in the both catalysts that facilitates the reducibility of the support. In the absence of feed CO2 and H-2, nearly 100% conversion of CO to CO2 with 100% H-2 selectivity was observed at 300 degrees C and 260 degrees C respectively, for Ti0.84Pt0.01Fe0.15O2-delta and Ti0.73Pd0.02Fe0.25O2-delta catalyst. However, the catalytic performance of Ti0.73Pd0.02Fe0.25O2-delta deteriorates in the presence of feed CO2 and H-2. The change in the support reducibility is the primary reason for the significant increase in the activity for CO oxidation and WGS reaction. The effect of Fe addition was more significant in Ti0.73Pd0.02Fe0.25O2-delta than Ti0.84Pt0.01Fe0.15O2-delta. Based on the spectroscopic evidences and surface phenomena, a hybrid reaction scheme utilizing both surface hydroxyl groups and the lattice oxygen was hypothesized over these catalysts for WGS reaction. The mechanisms based on the formate and redox pathway were used to fit the ldnetic data. The analysis of experimental data shows the redox mechanism is the dominant pathway over these catalysts. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the monotonic increase and the oscillation of electrical conductance in multiwalled carbon nanotubes with compressive strain. Combined experimental and theoretical analyses confirm that the conductance variation with strain is because of the transition from sp(2) to configurations that are promoted by the interaction of walls in the nanotubes. The intrawall interaction is the reason for the monotonic increase in the conduction, while the oscillations are attributable to interwall interactions. This explains the observed electromechanical oscillation in multiwalled nanotubes and its absence in single-walled nanotubes, thereby resolving a long-standing debate on the interpretation of these results. Moreover, the current carrying capability of nanotubes can be enhanced significantly by controlling applied strains. DOI: 10.1103/PhysRevLett.110.095504

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanical behaviour of cohesive-frictional granular materials is a combination of the strength pervading as intergranular friction (represented as an angle of internal friction - Phi), and the cohesion (C) between these particles. Most behavioral or constitutive models of this class of granular materials comprise of a cohesion and frictional component with no regard to the length scale i.e. from the micro structural models through the continuum models. An experimental study has been made on a model granular material, viz. angular sand with different weights of binding agents (varying degrees of cohesion) at multiple length scales to physically map this phenomenon. Cylindrical specimen of various diameters - 10, 20, 38, 100, 150 mm (and with an aspect ratio of 2) are reconstituted with 2, 4 and 8% by weight of a binding agent. The magnitude of this cohesion is analyzed using uniaxial compression tests and it is assumed to correspond to the peak in the normalized stress-strain plot. Increase in the cohesive strength of the material is seen with increasing size of the specimen. A possibility of ``entanglement'' occurring in larger specimens is proposed as a possible reason for deviation from a continuum framework.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The redox regulation of protein tyrosine phosphatase 1B (PTP1B) via the unusual transformation of its sulfenic acid (PTP1B-SOH) to a cyclic sulfenyl amide intermediate is studied by using small molecule chemical models. These studies suggest that the sulfenic acids derived from the H2O2-mediated reactions o-amido thiophenols do not efficiently cyclize to sulfenyl amides and the sulfenic acids produced in situ can be trapped by using methyl iodide. Theoretical calculations suggest that the most stable conformer of such sulfenic acids are stabilized by n(O) -> sigma* (S-OH) orbital interactions, which force the -OH group to adopt a position trans to the S center dot center dot center dot O interaction, leading to an almost linear arrangement of the O center dot center dot center dot S-O moiety and this may be the reason for the slow cyclization of such sulfenic acids to their corresponding sulfenyl amides. On the other hand, additional substituents at the 6-position of o-amido phenylsulfenic acids that can induce steric environment and alter the electronic properties around the sulfenic acid moiety by S center dot center dot center dot N or S center dot center dot center dot O nonbonded interactions destabilize the sulfenic acids by inducing strain in the molecule. This may lead to efficient the cyclization of such sulfenic acids. This model study suggests that the amino acid residues in the close proximity of the sulfenic acid moiety in PTP1B may play an important role in the cyclization of PTP1B-SOH to produce the corresponding sulfenyl amide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High elevation montane areas are called ``sky islands'' when they occur as a series of high mountains separated by lowland valleys. Different climatic conditions at high elevations makes sky islands a specialized type of habitat, rendering them naturally fragmented compared to more continuous habitat at lower elevations. Species in sky islands face unsuitable climate in the intervening valleys when moving from one montane area to another. The high elevation shola-grassland mosaic in the Western Ghats of southern India form one such sky island complex. The fragmented patches make this area ideal to study the effect of the spatial orientation of suitable habitat patches on population genetic structure of species found in these areas. Past studies have suggested that sky islands tend to have genetically structured populations, possibly due to reduced gene flow between montane areas. To test this hypothesis, we adopted the comparative approach. Using Amplified Fragment Length Polymorphisms, we compared population genetic structures of two closely related, similar sized butterfly species: Heteropsis oculus, a high elevation shola-grassland specialist restricted to the southern Western Ghats, and Mycalesis patnia, found more continuously distributed in lower elevations. In all analyses, as per expectation the sky island specialist H. oculus exhibited a greater degree of population genetic structure than M. patnia, implying a difference in geneflow. This difference in geneflow in turn appears to be due to the natural fragmentation of the sky island complexes. Detailed analysis of a subset of H. oculus samples from one sky island complex (the Anamalais) showed a surprising genetic break. A possible reason for this break could be unsuitable conditions of higher temperature and lower rainfall in the intervening valley region. Thus, sky island species are not only restricted by lack of habitat continuity between montane areas, but also by the nature of the intervening habitat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we report the gas phase infrared spectra of fluorene and its methylated derivatives using a heated multipass cell and argon as a carrier gas. The observed spectra in the 4000-400 cm(-1) range have been fitted using the modified scaled quantum mechanical force field (SQMFF) calculation with the 6-311G** basis. The advantage of using the modified SQMFF method is that it scales the force constants to find the best fit to the observed spectral lines by minimizing the fitting error. In this way we are able to assign all the observed fundamental bands in the spectra. With consecutive methyl substitutions two sets of bands are found to shift in a systematic way. The set of four aromatic C-H stretching vibrations around 3000 cm(-1) shifts toward lower frequencies while the single most intense aromatic C-H out-of-plane bending mode around 750 cm(-1) shifts toward higher frequencies. The reason for shifting of aromatic C-H stretching frequency toward lower wave numbers with gradual methyl substitution has been attributed to the lengthening of the C-H bonds due to the +I effect of the methyl groups to the ring current as revealed from the calculations. While the unexpected shifting of the aromatic C-H out-of-plane bend toward higher wave numbers with increasing methyl substitution is ascribed to the lowering of the number of adjacent aromatic C-H bonds on the plane of the benzene ring with gradual methyl substitutions. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: The ability to target conventional drugs efficiently inside cells to kill intraphagosomal bacteria has been a major hurdle in treatment of infective diseases. We aimed to develop an efficient drug delivery system for combating infection caused by Salmonella, a well-known intracellular and intraphagosomal pathogen. Chitosan dextran sulphate (CD) nanocapsules were assessed for their efficiency in delivering drugs against Salmonella. Methods: The CD nanocapsules were prepared using the layer-by-layer method and loaded with ciprofloxacin or ceftriaxone. Antibiotic-loaded nanocapsules were analysed in vitro for their ability to enter epithelial and macrophage cells to kill Salmonella. In vivo pharmacokinetics and organ distribution studies were performed to check the efficiency of the delivery system. The in vivo antibacterial activity of free antibiotic and antibiotic loaded into nanocapsules was tested in a murine salmonellosis model. Results: In vitro and in vivo experiments showed that this delivery system can be used effectively to clear Salmonella infection, CD nanocapsules were successfully employed for efficient targeting and killing of the intracellular pathogen at a dosage significantly lower than that of the free antibiotic. The increased retention time of ciprofloxacin in the blood and organs when it was delivered by CD nanocapsules compared with the conventional routes of administration may be the reason underlying the requirement for a reduced dosage and frequency of antibiotic administration. Conclusions: CD nanocapsules can be used as an efficient drug delivery system to treat intraphagosomal pathogens, especially Salmonella infection, This delivery system might be used effectively for other vacuolar pathogens including Mycobacteria, Brucella and Legionella.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sildenafil is a drug used to treat erectile dysfunction and pulmonary arterial hypertension. Because of poor aqueous solubility of the drug, the citrate salt, with improved solubility and pharmacokinetics, has been marketed. However, the citrate salt requires an hour to reach its peak plasma concentration. Thus, to improve solubility and bioavailability characteristics, cocrystals and salts of the drug have been prepared by treating aliphatic dicarboxylic acids with sildenafil; the N-methylated piperazine of the drug molecule interacts with the carboxyl group of the acid to form a heterosynthon. Salts are formed with oxalic and fumaric acid; salt monoanions are formed with succinic and glutaric acid. Sildenafil forms cocrystals with longer chain dicarboxylic acids such as adipic, pimelic, suberic, and sebacic acids. Auxiliary stabilization via C-H center dot center dot center dot O interactions is also present in these cocrystals and salts. Solubility experiments of sildenafil cocrystal/salts were carried out in 0.1N HCl aqueous medium and compared with the solubility of the citrate salt. The glutarate salt and pimelic acid cocrystal dissolve faster than the citrate salt in a two hour dissolution experiment. The glutarate salt exhibits improved solubility (3.2-fold) compared to the citrate salt in water. Solubilities of the binary salts follow an inverse correlation with their melting points, while the solubilities of the cocrystals follow solubilities of the coformer. Pharmacokinetic studies on rats showed that the glutarate salt exhibits doubled plasma AUC values in a single dose within an hour compared to the citrate salt. The high solubility of glutaric acid, in part originating from the strained conformation of the molecule and its high permeability, may be the reason for higher plasma levels of the drug.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a comparative evaluation of the average and switching models of a dc-dc boost converter from the point of view of real-time simulation. Both the models are used to simulate the converter in real-time on a Field Programmable Gate Array (FPGA) platform. The converter is considered to function over a wide range of operating conditions, and could do transition between continuous conduction mode (CCM) and discontinuous conduction mode (DCM). While the average model is known to be computationally efficient from the perspective of off-line simulation, the same is shown here to consume more logical resources than the switching model for real-time simulation of the dc-dc converter. Further, evaluation of the boundary condition between CCM and DCM is found to be the main reason for the increased consumption of resources by the average model.