97 resultados para RUBBER-TOUGHENED EPOXY
Resumo:
Regenerable 'gel-coated' cationic resins with fast sorption kinetics and high sorption capacity have application potential for removal of trace metal ions even in large-scale operations. Poly(acrylic acid) has been gel-coated on high-surface area silica (pre-coated with ethylene-vinyl acetate copolymer providing a thin barrier layer) and insolubilized by crosslinking with a low-molecular-weight diepoxide (epoxy equivalent 180 g) in the presence of benzyl dimethylamine catalyst at 70 degrees C, In experiments performed for Ca2+ sorption from dilute aqueous solutions of Ca(NO,),, the gel-coated acrylic resin is found to have nearly 40% higher sorption capacity than the bead-form commercial methacrylic resin Amberlite IRC-50 and also several limes higher rate of sorption. The sorption on the gel-coated sorbent under vigorous agitation has the characteristics of particle diffusion control with homogeneous (gel) diffusion in resin phase. A new mathematical model is proposed for such sorption on gel-coated ion-exchange resin in finite bath and solved by applying operator-theoretic methods. The analytical solution so obtained shows goad agreement with experimental sorption kinetics at relatively low levels (< 70%) of resin conversion.
Resumo:
Multistress aging of outdoor composite polymeric insulators continues to be a topic of interest for power transmission research community. Aging due to dry conditions alone at elevated temperatures and electric stress in the presence of UV radiation environment probably has not been explored. This paper deals with long-term accelerated multistress aging under the above conditions on full-scale 11 kV distribution class composite silicone rubber insulators. To evaluate the long-term synergistic effect of electric stress, temperature and UV radiation on insulators, they were subjected to accelerated aging in a specially designed multistress-aging chamber for 12000 hours. Chemical, physical and electrical changes due to degradation have been assessed using various techniques. It has been found that the content of low molecular weight molecules and hydrophobicity reduced significantly. Also, due to oxidation and aging there is appreciable increase in surface roughness and weight percentage of oxygen. Study is under progress and only intermediate results are presented in this paper.
Resumo:
n this paper, the influence of patch parameters on stress intensity factors in edge cracked plates is studied by employing transmission photoelasticity. Edge cracked plates made of photo-elastic material are patched on one side only by E glass-epoxy and carbon-epoxy unidirectional composites. The patch is located on the crack in such a way that the crack tip is not covered. Magnified isochromatic fringes are obtained by using a projection microscope of magnification 50, converted into a polariscope. Irwin's method is used to compute stress intensity factors from photoelastic data. The reduction in stress intensity factors is presented in graphical form as a function of patch parameters, namely stiffness, location and length. An empirical equation connecting reduction in stress intensity factor and these patch parameters is presented.
Resumo:
Reflection and transmission coefficients of rubberized coir pads over the frequency band 200 kHz to 4 MHz are presented in this Paper. These results are compared with those reported for neoprene, paraffin wax, rubber car mat and plastic door mat1. The rubberized coir pads were found to possess wideband absorption characteristics. It has been experimentally found that 0.05 m thick coir pads have almost 100% absorption in the frequency range 800 kHz-3 MHz with a maximum at 2.35 MHz. We have used this material for lining the water tank for underwater acoustic studies.
Resumo:
The problem of identifying parameters of time invariant linear dynamical systems with fractional derivative damping models, based on a spatially incomplete set of measured frequency response functions and experimentally determined eigensolutions, is considered. Methods based on inverse sensitivity analysis of damped eigensolutions and frequency response functions are developed. It is shown that the eigensensitivity method requires the development of derivatives of solutions of an asymmetric generalized eigenvalue problem. Both the first and second order inverse sensitivity analyses are considered. The study demonstrates the successful performance of the identification algorithms developed based on synthetic data on one, two and a 33 degrees of freedom vibrating systems with fractional dampers. Limited studies have also been conducted by combining finite element modeling with experimental data on accelerances measured in laboratory conditions on a system consisting of two steel beams rigidly joined together by a rubber hose. The method based on sensitivity of frequency response functions is shown to be more efficient than the eigensensitivity based method in identifying system parameters, especially for large scale systems.
Resumo:
Knowledge of drag force is an important design parameter in aerodynamics. Measurement of aerodynamic forces at hypersonic speed is a challenge and usually ground test facilities like shock tunnels are used to carry out such tests. Accelerometer based force balances are commonly employed for measuring aerodynamic drag around bodies in hypersonic shock tunnels. In this study, we present an analysis of the effect of model material on the performance of an accelerometer balance used for measurement of drag in impulse facilities. From the experimental studies performed on models constructed out of Bakelite HYLEM and Aluminum, it is clear that the rigid body assumption does not hold good during the short testing duration available in shock tunnels. This is notwithstanding the fact that the rubber bush used for supporting the model allows unconstrained motion of the model during the short testing time available in the shock tunnel. The vibrations induced in the model on impact loading in the shock tunnel are damped out in metallic model, resulting in a smooth acceleration signal, while the signal become noisy and non-linear when we use non-isotropic materials like Bakelite HYLEM. This also implies that careful analysis and proper data reduction methodologies are necessary for measuring aerodynamic drag for non-metallic models in shock tunnels. The results from the drag measurements carried out using a 60 degrees half angle blunt cone is given in the present analysis.
Resumo:
In this paper an attempt is made to obtain deflections of hybrid, laminated, rectangular and skew composite plates. Analysis is performed by employing the Galerkin technique. Numerical results have been obtained for two types of layups employing Kevlar/epoxy and Boron/epoxy laminae. It is observed that for a given aspect ratio the rigidity of the skew plate increases with an increase in the skew angle. Further, for a specified deflection, the hybrid laminates turn out to be lighter.
Resumo:
Regression ra tes of a hypergolic combination of fuel and oxidiser have been experimentally measured as a function of chamber pressure, mass flux and the percentage component of the hypergolic compound in natural rubber. The hypergolic compound used is difurfurylidene cyclohexanone (DFCH) which is hypergolic with the oxidiser red fuming nitric acid (RFNA) with ignition dela y of 60-70 ms. The data of weight loss versus time is obtained for burn times varying between 5 and 20 seconds. Two methods of correlating the data using mass flux of oxidiser and the total flux of hot gases have shown that index n of the regression law r=aGoxn or r=aGnxn-1 (x the axial distance) is about 0.5 or a little lower and not 0.8 even though the flow through the port is turbulent. It is argued that the reduction of index n is due to heterogeneous reaction between the liquid oxidiser and the hypergolic fuel component on the surface.
Resumo:
Four furanoid terpenic compounds, α-clausenan, rosefuran (γ-clausenan) and diclausenans A and B, were isolated from the essential oil of the leaves of Clausena willdenovii. Their structures were determined by chemical and spectral data. The occurrence of a high concentration of rosefuran is noteworthy. Selenium dioxide oxidation of diclausenan gave an unusual product, identified as an epoxy-dicarbonyl compound.
Resumo:
Birefringent composite models are fabricated using epoxy resin reinforced with unidirectionally oriented glass fibers. The mechanical and photoelastic properties of the material at room temperature are determined. To explore the possibility of application of stress-freezing technique to birefringent composite models, the behavior and properties of this material are studied at elevated temperature (at stress-freezing temperature of the resin). The properties of the material at room and at elevated temperatures are reported. The feasibility of stress freezing glass-fiber-reinforced epoxy composites with low-fiber-volume fraction is discussed.
Resumo:
Polymeric outdoor insulators are being increasingly used for electrical power transmission and distribution in the recent years. One of the current topics of interest for the power transmission community is the aging of such outdoor polymeric insulators. A few research groups are carrying out aging studies at room temperature with wet period as an integral part of multistress aging cycle as specified by IEC standards. However, aging effect due to dry conditions alone at elevated temperatures and electric stress in the presence of radiation environment has probably not been explored. It is interesting to study and understand the insulator performance under dry conditions where wet periods are either rare or absent and to estimate the extent of aging caused by multiple stresses. This paper deals with the long-term accelerated multistress aging on full-scale 11 kV distribution class composite silicone rubber insulators. In order to assess the long-term synergistic effect of electric stress, temperature and UV radiation on insulators, they are subjected to accelerated aging in a specially designed multistress-aging chamber for 3800 hours. All the stresses are applied at an accelerated level. Using a data acquisition system developed for the work, leakage current has been monitored in LabVIEW environment. Chemical changes due to degradations have been studied using Energy Dispersive X-Ray analysis, Scanning Electron Microscope and Fourier transform Infrared Spectroscopy. Periodically different parameters like low molecular weight (LMW) molecular content, hydrophobicity, leakage current and surface morphology were monitored. The aging study is under progress and only intermediate results are presented in this paper.
Resumo:
Mycobacterium smegmatis is known to form biofilms and many cell surface molecules like core glycopeptidolipids and short-chain mycolates appear to play important role in the process. However, the involvement of the cell surface molecules in mycobacteria towards complete maturation of biofilms is still not clear. This work demonstrates the importance of the glycopeptidolipid species with hydroxylated alkyl chain and the epoxylated mycolic acids, during the process of biofilm development. In our previous study, we reported the impairment of biofilm formation in rpoZ-deleted M. smegmatis, where rpoZ codes for the ω subunit of RNA polymerase (R. Mathew, R. Mukherjee, R. Balachandar, D. Chatterji, Microbiology 152 (2006) 1741). Here we report the occurrence of planktonic growth in a mc2155 strain which is devoid of rpoZ gene. This strain is deficient in selective incorporation of the hydroxylated glycopeptidolipids and the epoxy mycolates to their respective locations in the cell wall. Hence it forms a mutant biofilm defective in maturation, wherein the cells undertake various alternative metabolic pathways to survive in an environment where oxygen, the terminal electron acceptor, is limiting.
Resumo:
Partition ratios and M50 values of different carotenoids in hexaneaqueous methanol were determined. Mercuric chloride complexes of 14 epoxy carotenoids were prepared and their absorption maxima in acetone were estimated. The difference in chromatographic behavior of carotenoid epoxides on alumina and magnesium oxide-Celite columns is discussed. It is shown that the magnesium oxide-Celite column behaves as a reverse-phase chromatographic column to alumina column.
Resumo:
The distribution of carotenoids, both qualitative and quantitative, during 3 stages of ripening of mango has been studied using chromatographic, spectroscopic and chemical methods. There was an increase in content as well as in number of carotenoids during ripening. The present study showed there were 15, 14 and 17 different carotenoids in the unripe, partially ripe and fully ripe mangoes, respectively. Even though phytofluene (39.26%) was the major carotenoid in the partially ripe mango, β-carotene constituted the major carotenoid in the unripe (37.47%) and fully ripe mango (50.64%). cis-β-Carotene was present only in the fully ripe mango. Only the unripe mango contained ζ-carotene, whereas γ-carotene was present in all the 3 stages of ripening. The major xanthophyll present in the unripe mango was mutatoxanthin (9.44%), whereas auroxanthin constituted the major hydroxylated carotenoid of the partially ripe (5.07%) and fully ripe (10.40%) mangoes. The percent of cryptoxanthin dropped to lower levels during ripening. As ripening proceeded, lutein completely is appeared. There were significant quantities of eaxanthin in the partially ripe and fully ripe mango. Epoxy carotenoids such as 5,6-monoepoxy-β-carotene, mutatochrome, cis-violaxanthin, luteoxanthin, mutatoxanthin and auroxanthin were observed in all 3 stages of ripening.
Resumo:
Describes a simple triggered vacuum gap developed for initiating electric arcs in vacuum which uses the property that the voltage required to breakdown a gap in vacuum in the presence of a solid insulating material is considerably less than the voltage required in the absence of such material. In this triggered vacuum gap a solid insulating material is used in the angular space between the main cathode and the concentric trigger electrode forming the auxiliary gap. Different materials like epoxy resin, Teflon (PTFE) and mica have been used. The trigger voltage was found to vary in the range 560-1840 V. The results with epoxy and Teflon were unsatisfactory because the trigger voltages showed wide scatter and the auxiliary gap was soon bridged by metal particles eroded from the electrodes. Though the trigger voltages required with mica were relatively high, consistent triggering could be obtained for a large number of trials before the auxiliary gap was bridged. This was probably due to better thermal stability of mica as compared with either epoxy or Teflon.