206 resultados para Propagation velocity
Resumo:
In this paper,we present a belief propagation (BP) based algorithm for decoding non-orthogonal space-time block codes (STBC) from cyclic division algebras (CDA) having large dimensions. The proposed approachinvolves message passing on Markov random field (MRF) representation of the STBC MIMO system. Adoption of BP approach to decode non-orthogonal STBCs of large dimensions has not been reported so far. Our simulation results show that the proposed BP-based decoding achieves increasingly closer to SISO AWGN performance for increased number of dimensions. In addition, it also achieves near-capacity turbo coded BER performance; for e.g., with BP decoding of 24 x 24 STBC from CDA using BPSK (i.e.,n576 real dimensions) and rate-1/2 turbo code (i.e., 12 bps/Hz spectral efficiency), coded BER performance close to within just about 2.5 dB from the theoretical MIMO capacity is achieved.
Resumo:
In this paper, elastic wave propagation is studied in a nanocomposite reinforced with multiwall carbon nanotubes (CNTs). Analysis is performed on a representative volume element of square cross section. The frequency content of the exciting signal is at the terahertz level. Here, the composite is modeled as a higher order shear deformable beam using layerwise theory, to account for partial shear stress transfer between the CNTs and the matrix. The walls of the multiwall CNTs are considered to be connected throughout their length by distributed springs, whose stiffness is governed by the van der Waals force acting between the walls of nanotubes. The analyses in both the frequency and time domains are done using the wavelet-based spectral finite element method (WSFEM). The method uses the Daubechies wavelet basis approximation in time to reduce the governing PDE to a set of ODEs. These transformed ODEs are solved using a finite element (FE) technique by deriving an exact interpolating function in the transformed domain to obtain the exact dynamic stiffness matrix. Numerical analyses are performed to study the spectrum and dispersion relations for different matrix materials and also for different beam models. The effects of partial shear stress transfer between CNTs and matrix on the frequency response function (FRF) and the time response due to broadband impulse loading are investigated for different matrix materials. The simultaneous existence of four coupled propagating modes in a double-walled CNT-composite is also captured using modulated sinusoidal excitation.
Resumo:
Three-dimensional (3-D) kinematical conservation laws (KCL) are equations of evolution of a propagating surface Omega(t) in three space dimensions. We start with a brief review of the 3-D KCL system and mention some of its properties relevant to this paper. The 3-D KCL, a system of six conservation laws, is an underdetermined system to which we add an energy transport equation for a small amplitude 3-D nonlinear wavefront propagating in a polytropic gas in a uniform state and at rest. We call the enlarged system of 3-D KCL with the energy transport equation equations of weakly nonlinear ray theory (WNLRT). We highlight some interesting properties of the eigenstructure of the equations of WNLRT, but the main aim of this paper is to test the numerical efficacy of this system of seven conservation laws. We take several initial shapes for a nonlinear wavefront with a suitable amplitude distribution on it and let it evolve according to the 3-D WNLRT. The 3-D WNLRT is a weakly hyperbolic 7 x 7 system that is highly nonlinear. Here we use the staggered Lax-Friedrichs and Nessyahu-Tadmor central schemes and have obtained some very interesting shapes of the wavefronts. We find the 3-D KCL to be suitable for solving many complex problems for which there presently seems to be no other method capable of giving such physically realistic features.
Resumo:
The effect of tensile prestrain on fatigue crack propagation behaviour of commercial mild steel with significant amount of stringer inclusions has been studied. In prestrained materials the usual stable stage II crack growth region is preceded by a phase wherein a retardation in crack growth rate occurs. No such behaviour is observed in annealed material. The amount of retardation is found to increase with increase in prestrain. A mechanism for the observed retardation in crack growth rate is also presented.
Resumo:
Recent X-ray observations have revealed that early-type galaxies (which usually produce extended double radio sources) generally have hot gaseous haloes extending up to approx102kpc1,2. Moreover, much of the cosmic X-ray background radiation is probably due to a hotter, but extremely tenuous, intergalactic medium (IGM)3. We have presented4–7 an analytical model for the propagation of relativistic beams from galactic nuclei, in which the beams' crossing of the pressure-matched interface between the IGM and the gaseous halo, plays an important role. The hotspots at the ends of the beams fade quickly when their advance becomes subsonic with respect to the IGM. This model has successfully predicted (for typical double radio sources) the observed8 current mean linear-size (approx2Dsime350 kpc)4,5, the observed8–11 decrease in linear-size with cosmological redshift4–6 and the slope of the linear-size versus radio luminosity10,12–14 relation6. We have also been able to predict the redshift-dependence of observed numbers and radio luminosities of giant radio galaxies7,15. Here, we extend this model to include the propagation of somewhat weaker beams. We show that the observed flattening of the local radio luminosity function (LRLF)16–20 for radio luminosity Papproximately 1024 W Hz-1 at 1 GHz can be explained without invoking ad hoc a corresponding break in the beam power function Phi(Lb), because the heads of the beams with Lb < 1025 W Hz-1 are decelerated to sonic velocity within the halo itself, which leads to a rapid decay of radio luminosity and a reduced contribution of these intrinsically weaker sources to the observed LRLF.
Resumo:
The interface between two polar semiconductors can support three types of phonon-plasmon-polariton modes propagating in three well-defined frequency windows ??1?[min(?1,?3),?R1], ??2?[max(?2,?4),?R2], and ??3?[min(?2,?4),?R3]. The limiting frequencies ?1,2,3,4 are defined by ?1(?)=0, ?2(?)=0, and ?R1,2,3 by ?1(?)+?2(?)=0, where ?i(?) are dielectric functions of the two media with i=1,2. The dispersion, decay distances, and polarization of the three modes are discussed. The variation of the limiting frequencies with the interface plasma parameter ???p22/?p12 reveals an interesting feature in the dispersion characteristics of these modes. For the interfaces for which the bulk coupled phonon-plasmon frequencies of medium 1 are greater than the LO frequency or are less than the TO frequency of medium 2, there exist two values of ?=?1 and ?2(1) for which ??1 and ??3 are zero, respectively. Hence, for these values of ?, the two interface modes defined by ??1 and ??3 propagate with constant frequencies equal to the bulk coupled phonon-plasmon frequencies of medium 1, i.e., without showing any dispersion.
Corresponding States Correlations For Sound-Velocity In Saturated Cryogenic Liquids And Refrigerants
Resumo:
The dispersive characteristic of hydromagnetic surface waves along a plasma-plasma interface when the upper fluid moves with a uniform velocity is discussed. The region of propagation of these waves is shifted above or below depending on whether the basic velocity (uniform)Ugl0.
Resumo:
A class of self-propagating linear and nonlinear travelling wave solutions for compressible rotating fluid is studied using both numerical and analytical techiques. It is shown that, in general, a three dimensional linear wave is not periodic. However, for some range of wave numbers depending on rotation, horizontally propagating waves are periodic. When the rotation ohgr is equal to $$\sqrt {(\gamma - 1)/(4\gamma )}$$ , all horizontal waves are periodic. Here, gamma is the ratio of specific heats. The analytical study is based on phase space analysis. It reveals that the quasi-simple waves are periodic only in some plane, even when the propagation is horizontal, in contrast to the case of non-rotating flows for which there is a single parameter family of periodic solutions provided the waves propagate horizontally. A classification of the singular points of the governing differential equations for quasi-simple waves is also appended.
Resumo:
Theoretical study of propagation characteristics of VLF electromagnetic waves through an idealised parallel-plane earth-crust waveguide with overburden, experimental verification of some of these characteristics with the aid of a model tank and use of range equation reveal the superiority of radio communication between land and a deeply submerged terminal inside a ocean via the earth-crust over direct link communication through the ocean.
Resumo:
The energy input to giant molecular clouds is recalculated, using the proper linearized equations of motion, including the Coriolis force and allowing for changes in the guiding center. Perturbation theory yields a result in the limit of distant encounters and small initial epicyclic amplitudes. Direct integration of the motion equations allows the strong encounter regime to be studied. The present perturbation theory result differs by a factor of order unity from that of Jog and Ostriker (1988). The result of present numerical integrations for the 2D (planar) velocity dispersion is presented. The accretion rate for a molecular cloud in the Galactic disk is calculated.
Resumo:
This paper presents a study on the uncertainty in material parameters of wave propagation responses in metallic beam structures. Special effort is made to quantify the effect of uncertainty in the wave propagation responses at high frequencies. Both the modulus of elasticity and the density are considered uncertain. The analysis is performed using a Monte Carlo simulation (MCS) under the spectral finite element method (SEM). The randomness in the material properties is characterized by three different distributions, the normal, Weibull and extreme value distributions. Their effect on wave propagation in beams is investigated. The numerical study shows that the CPU time taken for MCS under SEM is about 48 times less than for MCS under a conventional one-dimensional finite element environment for 50 kHz loading. The numerical results presented investigate effects of material uncertainties on high frequency modes. A study is performed on the usage of different beam theories and their uncertain responses due to dynamic impulse load. These studies show that even for a small coefficient of variation, significant changes in the above parameters are noticed. A number of interesting results are presented, showing the true effects of uncertainty response due to dynamic impulse load.