83 resultados para Precursor Cells, B-Lymphoid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A RNAi based antiviral strategy holds the promise to impede hepatitis C viral (HCV) infection overcoming the problem of emergence of drug resistant variants, usually encountered in the interferon free direct-acting antiviral therapy. Targeted delivery of siRNA helps minimize adverse `off-target' effects and maximize the efficacy of therapeutic response. Herein, we report the delivery of siRNA against the conserved 5'-untranslated region (UTR) of HCV RNA using a liver-targeted dendritic nano-vector functionalized with a galactopyranoside ligand (DG). Physico-chemical characterization revealed finer details of complexation of DG with siRNA, whereas molecular dynamic simulations demonstrated sugar moieties projecting ``out'' in the complex. Preferential delivery of siRNA to the liver was achieved through a highly specific ligand-receptor interaction between dendritic galactose and the asialoglycoprotein receptor. The siRNA-DG complex exhibited perinuclear localization in liver cells and co-localization with viral proteins. The histopathological studies showed the systemic tolerance and biocompatibility of DG. Further, whole body imaging and immunohistochemistry studies confirmed the preferential delivery of the nucleic acid to mice liver. Significant decrease in HCV RNA levels (up to 75%) was achieved in HCV subgenomic replicon and full length HCV-JFH1 infectious cell culture systems. The multidisciplinary approach provides the `proof of concept' for restricted delivery of therapeutic siRNAs using a target oriented dendritic nano-vector.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoactive metal complexes have emerged as potential candidates in the photodynamic therapy (PDT) of cancer. We present here the synthesis, characterization and visible light-triggered anticancer activity of two novel mixed-ligand oxo-bridged iron(III) complexes, viz., {Fe(L)(acac)}(2)(mu-O)](ClO4)(2) (1) and {Fe (L)(cur)}(2)(mu-O)](ClO4)(2) (2) where L is bis-(2-pyridylmethyl)-benzylamine, acac is acetylacetonate and cur is the monoanion of curcumin (bis(4-hydroxy-3-methoxyphenyl)-1,6-diene-3,5-dione). The crystal structure of complex 1 (as PF6 salt, 1a) shows distorted octahedral geometry of each iron(III) centre formed by the FeN3O3 core. The 1: 2 electrolytic complexes are stable in solution and retain their oxo-bridged identity in aqueous medium. Complex 2 has a strong absorption band in the visible region and shows promising photocytotoxicity in HeLa and MCF-7 cancer cells in visible light giving respective IC50 values of 3.1 +/- 0.4 lM and 4.9 +/- 0.5 lM while remains non-toxic in the dark (IC50 > 50 lM). The control complex 1 is inactive both in the light and dark. Complex 2 accumulates in cytoplasm of HeLa and MCF-7 cells as evidenced from fluorescence microscopy and triggers apoptotic cell death via light-assisted generation of reactive oxygen species (ROS). Taken together, complex 2 with its promising photocytotoxicity but negligible dark toxicity in cancer cells has significant photochemotherapeutic potential for applications in PDT. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pluripotent stem cells are being actively studied as a cell source for regenerating damaged liver. For long-term survival of engrafting cells in the body, not only do the cells have to execute liver-specific function but also withstand the physical strains and invading pathogens. The cellular innate immune system orchestrated by the interferon (IFN) pathway provides the first line of defense against pathogens. The objective of this study is to assess the innate immune function as well as to systematically profile the IFN-induced genes during hepatic differentiation of pluripotent stem cells. To address this objective, we derived endodermal cells (day 5 post-differentiation), hepatoblast (day 15) and hepatocyte-like cells (day 21) from human embryonic stem cells (hESCs). Day 5, 15 and 21 cells were stimulated with IFN-alpha and subjected to IFN pathway analysis. Transcriptome analysis was carried out by RNA sequencing. The results showed that the IFN-alpha treatment activated STAT-JAK pathway in differentiating cells. Transcriptome analysis indicated stage specific expression of classical and non-classical IFN-stimulated genes (ISGs). Subsequent validation confirmed the expression of novel ISGs including RASGRP3, CLMP and TRANK1 by differentiated hepatic cells upon IFN treatment. Hepatitis C virus replication in hESC-derived hepatic cells induced the expression of ISGs - LAMP3, ETV7, RASGRP3, and TRANK1. The hESC-derived hepatic cells contain intact innate system and can recognize invading pathogens. Besides assessing the tissue-specific functions for cell therapy applications, it may also be important to test the innate immune function of engrafting cells to ensure adequate defense against infections and improve graft survival. (C) 2015 The Authors. Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin films of Cu2SnS3 (CTS) were deposited by the facile solution processed sol-gel route followed by a low-temperature annealing. The Cu-Sn-thiourea complex formation was analysed using Fourier Transform Infrared spectrophotometer (FTIR). The various phase transformations and the deposition temperature range for the initial precursor solution was determined using Thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC). X-Ray Diffraction (XRD) studies revealed the tetragonal phase formation of the CTS annealed films. Raman spectroscopy studies further confirmed the tetragonal phase formation and the absence of any deterioratory secondary phases. The morphological investigations and compositional analysis of the films were determined using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) respectively. Atomic Force Microscopy (AFM) was used to estimate the surface roughness of 1.3 nm. The absorption coefficient was found to be 10(4) cm(-1) and bandgap 1.3 eV which qualifies CTS to be a potential candidate for photovoltaic applications. The refractive index, extinction coefficient and relative permittivity of the film were measured by Spectroscopic ellipsometry. Hall effect measurements, indicated the p type nature of the films with a hole concentration of 2 x 10(18) cm(-3), electrical conductivity of 9 S/cm and a hole mobility of 29 cm(2)/V. The properties of CTS as deduced from the current study, present CTS as a potential absorber layer material for thin film solar cells. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The expression of a biologically active human IFN4 depends on the presence of a frameshift deletion polymorphism within the first exon of the interferon lambda 4 (IFNL4) gene. In this report, we use the lung carcinoma-derived cell line, A549, which is genetically viable to express a functional IFN4, to address transcriptional requirements of the IFNL4 gene. We show that the GC-rich DNA-binding transcription factor (TF) specificity protein 1 (Sp1) is recruited to the IFNL4 promoter and has a role in induction of gene expression upon stimulation with viral RNA mimic poly(I:C). By using RNAi and overexpression strategies, we also show key roles in IFNL4 gene expression for the virus-inducible TFs, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-B), IFN regulatory factor 3 (IRF3), and IRF7. Interestingly, we also observe that overexpression of IFN4 influences IFNL4 promoter activity, which may further be dependent on the retinoic acid-inducible gene-I (RIG-I)-like receptor pathway. Together, our work for the first time reports on the functional characterization of the human IFNL4 promoter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin films of CuIn1-xAlxSe2 (CIAS) were grown on the flexible 10 micrometer thin stainless steel substrates, by dc co-sputtering from the elemental cathodes, followed by annealing with modified selenization. CuInAl alloyed precursor films were selenized both by noble gas assisted Se vapor transport in a tubular furnace and vacuum evaporation of Se in an evaporation chamber. CIAS thin films were optimized for better adhesion. X-ray diffraction, scanning electron microscopy, and UV-visible absorption spectroscopy were used to characterize the selenized films. The composition of CIAS films was varied by substituting In with Al in CuInSe2 (CIS) from 0 <= x <= 0.65 (x = Al/Al+In). Lattice parameters, average crystallite sizes, and compact density of the films, decreased when compared to CIS and (112) peak shifted to higher Bragg's angle, upon Al incorporation. The dislocation density and strain were found to increase with Al doping. Solar cells with SS/Mo/CIAS/CdS/iZnO: AZnO/Al configuration were fabricated and were tested for current-voltage characteristics for various `x' values, under Air Mass 1.5 Global one sun illumination. The best CIAS solar cell showed the efficiency of 6.8%, with x = 0.13, Eg = 1.17 eV, fill factor 45.04, and short circuit current density J(sc) 30 mA/cm(2).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin films of CuIn1-xAlxSe2 (CIAS) were grown on the flexible 10 micrometer thin stainless steel substrates, by dc co-sputtering from the elemental cathodes, followed by annealing with modified selenization. CuInAl alloyed precursor films were selenized both by noble gas assisted Se vapor transport in a tubular furnace and vacuum evaporation of Se in an evaporation chamber. CIAS thin films were optimized for better adhesion. X-ray diffraction, scanning electron microscopy, and UV-visible absorption spectroscopy were used to characterize the selenized films. The composition of CIAS films was varied by substituting In with Al in CuInSe2 (CIS) from 0 <= x <= 0.65 (x = Al/Al+In). Lattice parameters, average crystallite sizes, and compact density of the films, decreased when compared to CIS and (112) peak shifted to higher Bragg's angle, upon Al incorporation. The dislocation density and strain were found to increase with Al doping. Solar cells with SS/Mo/CIAS/CdS/iZnO: AZnO/Al configuration were fabricated and were tested for current-voltage characteristics for various `x' values, under Air Mass 1.5 Global one sun illumination. The best CIAS solar cell showed the efficiency of 6.8%, with x = 0.13, Eg = 1.17 eV, fill factor 45.04, and short circuit current density J(sc) 30 mA/cm(2).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of four novel neodymium(III) complexes of the formulation Nd(R-tpy)(O-O)(NO3)(2)] (1-4), where R-tpy is 4'-phenyl-2,2': 6', 2''-terpyridine (Ph-tpy; 1, 2) and 4'-ferrocenyl-2,2': 6', 2''-terpyridine (Fc-tpy; 3, 4); O-O is the conjugate base of acetylacetone (Hacac; 1, 3) or curcumin (Hcurc; 2, 4), are synthesized and characterized. The single crystal structure of 1 shows that the complex is a discrete mononuclear species with the Nd(III) centre in a nine coordinate environment provided by a set of O6N3 donor atoms. Complexes 1 and 3 having the simple acac ligand are prepared as control compounds. Complex 4, possessing an appended ferrocenyl (Fc) and the curcumin moiety, is remarkably photocytotoxic to HeLa and MCF-7 cancer cells in visible light giving respective IC50 values of 0.7 mu M and 2.1 mu M while being significantly less toxic to MCF-10A normal cells (IC50 = 34 mu M) and in the dark (IC50 > 50 mu M). The phenyl appended complex 2, lacking a ferrocenyl moiety, is significantly less toxic to both the cell lines when compared with 4. Complexes 1 and 3, lacking the photoactive curcumin moiety, do not show any apparent toxicity both in light and in the dark. The cell death is apoptotic in nature and is mediated by the light-induced formation of reactive oxygen species (ROS). Fluorescence imaging experiment with HeLa cells reveals mitochondrial accumulation of complex 4 within 4 h of incubation. The complexes bind to calf thymus (ct) DNA with moderate affinity giving K-b values in the range of 10(4)-10(5) M-1. The curcumin complexes 2 and 4 cleave plasmid supercoiled DNA to its nicked circular form in visible light via O-1(2) and (OH)-O-center dot pathways. The presence of the ferrocenyl moiety is likely to be responsible for the enhanced cellular uptake and photocytotoxicity of complex 4. Thus, the mitochondria targeting complex 4, being remarkably cytotoxic in light but non-toxic in the dark and to normal cells, is a potential candidate for photochemotherapeutic applications.