143 resultados para Portland cement concrete.
Resumo:
Rammed earth is an energy efficient and low carbon emission alternative for load bearing walls. This paper attempts to examine the influence of clay content and moisture content on the compressive strength of cement stabilised rammed earth (CSRE) through experimental investigations. Compressive strength of CSRE prisms was monitored both in dry and wet (saturated) conditions. Major conclusions of the study are:(a) Optimum clay content for maximum compressive strength is about 16%, (b) the strength of CSRE is sensitive to the moisture content at the time of testing, (c) Strength in saturated condition is less than half of the dry strength and (d) Water absorption (saturated water content) increases as the clay content of the soil mix increases and it is in the range of 12 to 16% for the CRSE prisms with 8% cement.
Resumo:
Fly ash and silica fume are two pozzolans that have been widely used for improved concrete strength and durability. Silica fume displays a greater pozzolanic reactivity than fly ash primarily due to its finer particle size. The reactivity of fly ash can be improved by reducing its particle size distribution. This paper discusses the fresh and hardened properties of concrete made with an ultra-fine fly ash (UFFA) produced by air classification. Durability testing for chloride diffusivity, rapid chloride permeability, alkali-silica reaction (ASR), and sulfate attack was also conducted It was found that at a given workability and water content, concrete containing UFFA could be produced with only 50% of the high-range water-reducer dosage required for comparable silica fume concrete. Similar early strengths and durability measures as silica fume concrete were observed when a slightly higher dosage of UFFA was used with a small reduction (10%) in water content.
Resumo:
An attempt has been made to experimentally investigate the fracture process zone (FPZ) using Acoustic Emission (AE) method in High Strength Concrete (HSC) beams subjected to monotonically increasing load. Stress waves are released during the fracture process in materials, which cause acoustic emissions. AE energy released during the fracture of notched HSC beam specimens during Three Point Bend (TPB) tests is measured and is used to investigate the FPZ in the notched HSC beams having 28-day compressive strength of 78.0 MPa. The specimens are tested by Material Testing System (MTS) of 1200 KN capacity employing Crack Mouth Opening Displacement (CMOD) control at the rate of 0.0004 mmlsec in accordance with RILEM recommendations. A brief review on AE technique applied to concrete fracture is presented. The fracture process zone developed and the AE energy released during the fracture process in high strength concrete beam specimens are presented and discussed. It was observed that AE events containing higher energy are located around the notch tip. It may be possible to relate AE energy to fracture energy of concrete.