135 resultados para Pollen tube pathway
Effect of regenerator material compositions on the performances of a two-stage pulse tube cryocooler
Resumo:
The synthesis of dsRNA is analyzed using a pathway model with amplifications caused by the aberrant RNAs. The transgene influx rate is assumed time-decaying considering the fact that the number of transgenes can not be infinite. The dynamics of the transgene induced RNA silencing is investigated using a system of coupled nonautonomous ordinary nonlinear differential equations which describe the model phenomenologically. The silencing phenomena are detected after a period of transcription. Important contributions of certain parameters are discussed with several numerical examples.
Resumo:
This paper reports single pulse shock tube and ab initio studies on thermal decomposition of 2-fluoro and 2-chloroethanol at T=1000–1200 K. Both molecules have HX (X = F/Cl) and H2O molecular elimination channels. The CH3CHO formed by HX elimination is chemically active and undergoes secondary decomposition resulting in the formation of CH4, C2H6, and C2H4. A detailed kinetic simulation indicates that the formation of C2H4 could not be quantitatively explained as arising exclusively from secondary CH3CHO decomposition. Contributions from primary radical processes need to be considered to explain C2H4 quantitatively. Ab initio calculations on HX and H2O elimination reactions from the haloethanols at HF, MP2, and DFT levels with various basis sets up to 6/311++G**are reported. It is pointed out that due to strong correlations between A and Eα, comparison of these two parameters between experimental and theoretical results could be misleading.
Resumo:
Iodothyronine deiodinases (IDs) are mammalian selenoenzymes that catalyze the conversion of thyroxine (T4) to 3,5,3'-triiodothyronine (T3) and 3,3',5'-triiodothyronine (rT3) by the outer- and inner-ring deiodination pathways, respectively. These enzymes also catalyze further deiodination of T3 and rT3 to produce a variety of di- and monoiodo derivatives. In this paper, the deiodinase activity of a series of pen-substituted naphthalenes having different amino groups is described. These compounds remove iodine selectively from the inner-ring of T4 and T3 to produce rT3 and 3,3'-diiodothyronine (3,3'-T2), respectively. The naphthyl-based compounds having two selenols in the pen-positions exhibit much higher deiodinase activity than those having two thiols or a thiol selenol pair. Mechanistic investigations reveal that the formation of a halogen bond between the iodine and chalcogen (S or Se) and the pen-interaction between two chalcogen atoms (chalcogen bond) are important for the deiodination reactions. Although the formation of a halogen bond leads to elongation of the C-I bond, the chalcogen bond facilitates the transfer of more electron density to the C-I sigma* orbitals, leading to a complete cleavage of the C-I bond. The higher activity of amino-substituted selenium compounds can be ascribed to the deprotonation of thiol/selenol moiety by the amino group, which not only increases the strength of halogen bond but also facilitates the chalcogen chalcogen interactions.
Resumo:
Deoxyhypusine hydroxylase (DOHH) catalyzes the final step in the post-translational synthesis of an unusual amino acid hypusine (N-(sic)-(4-amino-2-hydroxybutyl) lysine), which is present on only one cellular protein, eukaryotic initiation factor 5A (eIF5A). We present here the molecular and structural basis of the function of DOHH from the protozoan parasite, Leishmania donovani, which causes visceral leishmaniasis. The L. donovani DOHH gene is 981 bp and encodes a putative polypeptide of 326 amino acids. DOHH is a HEAT-repeat protein with eight tandem repeats of alpha-helical pairs. Four conserved histidine-glutamate sequences have been identified that may act as metal coordination sites. A similar to 42 kDa recombinant protein with a His-tag was obtained by heterologous expression of DOHH in Escherichia coli. Purified recombinant DOHH effectively catalyzed the hydroxylation of the intermediate, eIF5A-deoxyhypusine (eIF5A-Dhp), in vitro. L. donovani DOHH (LdDOHH) showed similar to 40.6% sequence identity with its human homolog. The alignment of L. donovani DOHH with the human homolog shows that there are two significant insertions in the former, corresponding to the alignment positions 159-162 (four amino acid residues) and 174-183 (ten amino acid residues) which are present in the variable loop connecting the N- and C-terminal halves of the protein, the latter being present near the substrate binding site. Deletion of the ten-amino-acid-long insertion decreased LdDOHH activity to 14% of the wild type recombinant LdDOHH. Metal chelators like ciclopirox olamine (CPX) and mimosine significantly inhibited the growth of L. donovani and DOHH activity in vitro. These inhibitors were more effective against the parasite enzyme than the human enzyme. This report, for the first time, confirms the presence of a complete hypusine pathway in a kinetoplastid unlike eubacteria and archaea. The structural differences between the L. donovani DOHH and the human homolog may be exploited for structure based design of selective inhibitors against the parasite.
Resumo:
The preference for GarrattBraverman (GB) over MyersSaito (MS) and Schmittel (SCM) cyclizations has recently been demonstrated in sulfones capable of undergoing all three of the processes. As the GB cyclization is a self-quenching process, there is a need to change the selectivity to the non-self-quenching MS or SCM pathway so as to enhance the DNA-cleaving efficiency that operates through the radical-mediated process. Herein we report a conformational constraint-based strategy developed by using computations (M06-2X/6-31+G*) to switch the selectivity from GB to MS/SCM pathway which also results in greater DNA-cleavage activity. The preference for GB could be brought back by easing the constraint with the help of spacers.