100 resultados para Placement of router nodes
Resumo:
Regenerating codes are a class of recently developed codes for distributed storage that, like Reed-Solomon codes, permit data recovery from any arbitrary of nodes. However regenerating codes possess in addition, the ability to repair a failed node by connecting to any arbitrary nodes and downloading an amount of data that is typically far less than the size of the data file. This amount of download is termed the repair bandwidth. Minimum storage regenerating (MSR) codes are a subclass of regenerating codes that require the least amount of network storage; every such code is a maximum distance separable (MDS) code. Further, when a replacement node stores data identical to that in the failed node, the repair is termed as exact. The four principal results of the paper are (a) the explicit construction of a class of MDS codes for d = n - 1 >= 2k - 1 termed the MISER code, that achieves the cut-set bound on the repair bandwidth for the exact repair of systematic nodes, (b) proof of the necessity of interference alignment in exact-repair MSR codes, (c) a proof showing the impossibility of constructing linear, exact-repair MSR codes for d < 2k - 3 in the absence of symbol extension, and (d) the construction, also explicit, of high-rate MSR codes for d = k+1. Interference alignment (IA) is a theme that runs throughout the paper: the MISER code is built on the principles of IA and IA is also a crucial component to the nonexistence proof for d < 2k - 3. To the best of our knowledge, the constructions presented in this paper are the first explicit constructions of regenerating codes that achieve the cut-set bound.
Resumo:
Users can rarely reveal their information need in full detail to a search engine within 1--2 words, so search engines need to "hedge their bets" and present diverse results within the precious 10 response slots. Diversity in ranking is of much recent interest. Most existing solutions estimate the marginal utility of an item given a set of items already in the response, and then use variants of greedy set cover. Others design graphs with the items as nodes and choose diverse items based on visit rates (PageRank). Here we introduce a radically new and natural formulation of diversity as finding centers in resistive graphs. Unlike in PageRank, we do not specify the edge resistances (equivalently, conductances) and ask for node visit rates. Instead, we look for a sparse set of center nodes so that the effective conductance from the center to the rest of the graph has maximum entropy. We give a cogent semantic justification for turning PageRank thus on its head. In marked deviation from prior work, our edge resistances are learnt from training data. Inference and learning are NP-hard, but we give practical solutions. In extensive experiments with subtopic retrieval, social network search, and document summarization, our approach convincingly surpasses recently-published diversity algorithms like subtopic cover, max-marginal relevance (MMR), Grasshopper, DivRank, and SVMdiv.
Resumo:
Regenerating codes are a class of codes for distributed storage networks that provide reliability and availability of data, and also perform efficient node repair. Another important aspect of a distributed storage network is its security. In this paper, we consider a threat model where an eavesdropper may gain access to the data stored in a subset of the storage nodes, and possibly also, to the data downloaded during repair of some nodes. We provide explicit constructions of regenerating codes that achieve information-theoretic secrecy capacity in this setting.
Resumo:
We provide new analytical results concerning the spread of information or influence under the linear threshold social network model introduced by Kempe et al. in, in the information dissemination context. The seeder starts by providing the message to a set of initial nodes and is interested in maximizing the number of nodes that will receive the message ultimately. A node's decision to forward the message depends on the set of nodes from which it has received the message. Under the linear threshold model, the decision to forward the information depends on the comparison of the total influence of the nodes from which a node has received the packet with its own threshold of influence. We derive analytical expressions for the expected number of nodes that receive the message ultimately, as a function of the initial set of nodes, for a generic network. We show that the problem can be recast in the framework of Markov chains. We then use the analytical expression to gain insights into information dissemination in some simple network topologies such as the star, ring, mesh and on acyclic graphs. We also derive the optimal initial set in the above networks, and also hint at general heuristics for picking a good initial set.
Resumo:
Particle Swarm Optimization is a parallel algorithm that spawns particles across a search space searching for an optimized solution. Though inherently parallel, they have distinct synchronizations points which stumbles attempts to create completely distributed versions of it. In this paper, we attempt to create a completely distributed peer-peer particle swarm optimization in a cluster of heterogeneous nodes. Since, the original algorithm requires explicit synchronization points we modified the algorithm in multiple ways to support a peer-peer system of nodes. We also modify certain aspect of the basic PSO algorithm and show how certain numerical problems can take advantage of the same thereby yielding fast convergence.
Resumo:
In social choice theory, preference aggregation refers to computing an aggregate preference over a set of alternatives given individual preferences of all the agents. In real-world scenarios, it may not be feasible to gather preferences from all the agents. Moreover, determining the aggregate preference is computationally intensive. In this paper, we show that the aggregate preference of the agents in a social network can be computed efficiently and with sufficient accuracy using preferences elicited from a small subset of critical nodes in the network. Our methodology uses a model developed based on real-world data obtained using a survey on human subjects, and exploits network structure and homophily of relationships. Our approach guarantees good performance for aggregation rules that satisfy a property which we call expected weak insensitivity. We demonstrate empirically that many practically relevant aggregation rules satisfy this property. We also show that two natural objective functions in this context satisfy certain properties, which makes our methodology attractive for scalable preference aggregation over large scale social networks. We conclude that our approach is superior to random polling while aggregating preferences related to individualistic metrics, whereas random polling is acceptable in the case of social metrics.
Resumo:
We demonstrate the efficacy of amorphous macroporous carbon substrates as electrodes to support neuronal cell proliferation and differentiation in electric field mediated culture conditions. The electric field was applied perpendicular to carbon substrate electrode, while growing mouse neuroblastoma (N2a) cells in vitro. The placement of the second electrode outside of the cell culture medium allows the investigation of cell response to electric field without the concurrent complexities of submerged electrodes such as potentially toxic electrode reactions, electro-kinetic flows and charge transfer (electrical current) in the cell medium. The macroporous carbon electrodes are uniquely characterized by a higher specific charge storage capacity (0.2 mC/cm(2)) and low impedance (3.3 k Omega at 1 kHz). The optimal window of electric field stimulation for better cell viability and neurite outgrowth is established. When a uniform or a gradient electric field was applied perpendicular to the amorphous carbon substrate, it was found that the N2a cell viability and neurite length were higher at low electric field strengths (<= 2.5 V/cm) compared to that measured without an applied field (0 V/cm). While the cell viability was assessed by two complementary biochemical assays (MTT and LDH), the differentiation was studied by indirect immunostaining. Overall, the results of the present study unambiguously establish the uniform/gradient vertical electric field based culture protocol to either enhance or to restrict neurite outgrowth respectively at lower or higher field strengths, when neuroblastoma cells are cultured on porous glassy carbon electrodes having a desired combination of electrochemical properties. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
We propose a Cooperative Opportunistic Automatic Repeat ReQuest (CoARQ) scheme to solve the HOL-blocking problem in infrastructure IEEE 802.11 WLANs. HOL blocking occurs when the head-of-the-line packet at the Access Point (AP) queue blocks the transmission of packets to other destinations resulting in severe throughput degradation. When the AP transmits a packet to a mobile station (STA), some of the nodes in the vicinity can overhear this packet transmission successfully. If the original transmission by the AP is unsuccessful, our CoARQ scheme chooses the station. STA or AP) with the best channel to the intended receiver as a relay and the chosen relay forwards the AP's packet to the receiver. This way, our scheme removes the bottleneck at the AP, thereby providing significant improvements in the throughput of the AP. We analyse the performance of our scheme in an infrastructure WLAN under a TCP controlled file download scenario and our analytical results are further validated by extensive simulations.
Resumo:
Energy harvesting sensor (EHS) nodes provide an attractive and green solution to the problem of limited lifetime of wireless sensor networks (WSNs). Unlike a conventional node that uses a non-rechargeable battery and dies once it runs out of energy, an EHS node can harvest energy from the environment and replenish its rechargeable battery. We consider hybrid WSNs that comprise of both EHS and conventional nodes; these arise when legacy WSNs are upgraded or due to EHS deployment cost issues. We compare conventional and hybrid WSNs on the basis of a new and insightful performance metric called k-outage duration, which captures the inability of the nodes to transmit data either due to lack of sufficient battery energy or wireless fading. The metric overcomes the problem of defining lifetime in networks with EHS nodes, which never die but are occasionally unable to transmit due to lack of sufficient battery energy. It also accounts for the effect of wireless channel fading on the ability of the WSN to transmit data. We develop two novel, tight, and computationally simple bounds for evaluating the k-outage duration. Our results show that increasing the number of EHS nodes has a markedly different effect on the k-outage duration than increasing the number of conventional nodes.
Resumo:
We consider multicast flow problems where either all of the nodes or only a subset of the nodes may be in session. Traffic from each node in the session has to be sent to every other node in the session. If the session does not consist of all the nodes, the remaining nodes act as relays. The nodes are connected by undirected edges whose capacities are independent and identically distributed random variables. We study the asymptotics of the capacity region (with network coding) in the limit of a large number of nodes, and show that the normalized sum rate converges to a constant almost surely. We then provide a decentralized push-pull algorithm that asymptotically achieves this normalized sum rate.
Resumo:
Regenerating codes are a class of codes proposed for providing reliability of data and efficient repair of failed nodes in distributed storage systems. In this paper, we address the fundamental problem of handling errors and erasures at the nodes or links, during the data-reconstruction and node-repair operations. We provide explicit regenerating codes that are resilient to errors and erasures, and show that these codes are optimal with respect to storage and bandwidth requirements. As a special case, we also establish the capacity of a class of distributed storage systems in the presence of malicious adversaries. While our code constructions are based on previously constructed Product-Matrix codes, we also provide necessary and sufficient conditions for introducing resilience in any regenerating code.
Resumo:
Regenerating codes and codes with locality are two coding schemes that have recently been proposed, which in addition to ensuring data collection and reliability, also enable efficient node repair. In a situation where one is attempting to repair a failed node, regenerating codes seek to minimize the amount of data downloaded for node repair, while codes with locality attempt to minimize the number of helper nodes accessed. This paper presents results in two directions. In one, this paper extends the notion of codes with locality so as to permit local recovery of an erased code symbol even in the presence of multiple erasures, by employing local codes having minimum distance >2. An upper bound on the minimum distance of such codes is presented and codes that are optimal with respect to this bound are constructed. The second direction seeks to build codes that combine the advantages of both codes with locality as well as regenerating codes. These codes, termed here as codes with local regeneration, are codes with locality over a vector alphabet, in which the local codes themselves are regenerating codes. We derive an upper bound on the minimum distance of vector-alphabet codes with locality for the case when their constituent local codes have a certain uniform rank accumulation property. This property is possessed by both minimum storage regeneration (MSR) and minimum bandwidth regeneration (MBR) codes. We provide several constructions of codes with local regeneration which achieve this bound, where the local codes are either MSR or MBR codes. Also included in this paper, is an upper bound on the minimum distance of a general vector code with locality as well as the performance comparison of various code constructions of fixed block length and minimum distance.
Resumo:
Matroidal networks were introduced by Dougherty et al. and have been well studied in the recent past. It was shown that a network has a scalar linear network coding solution if and only if it is matroidal associated with a representable matroid. A particularly interesting feature of this development is the ability to construct (scalar and vector) linearly solvable networks using certain classes of matroids. Furthermore, it was shown through the connection between network coding and matroid theory that linear network coding is not always sufficient for general network coding scenarios. The current work attempts to establish a connection between matroid theory and network-error correcting and detecting codes. In a similar vein to the theory connecting matroids and network coding, we abstract the essential aspects of linear network-error detecting codes to arrive at the definition of a matroidal error detecting network (and similarly, a matroidal error correcting network abstracting from network-error correcting codes). An acyclic network (with arbitrary sink demands) is then shown to possess a scalar linear error detecting (correcting) network code if and only if it is a matroidal error detecting (correcting) network associated with a representable matroid. Therefore, constructing such network-error correcting and detecting codes implies the construction of certain representable matroids that satisfy some special conditions, and vice versa. We then present algorithms that enable the construction of matroidal error detecting and correcting networks with a specified capability of network-error correction. Using these construction algorithms, a large class of hitherto unknown scalar linearly solvable networks with multisource, multicast, and multiple-unicast network-error correcting codes is made available for theoretical use and practical implementation, with parameters, such as number of information symbols, number of sinks, number of coding nodes, error correcting capability, and so on, being arbitrary but for computing power (for the execution of the algorithms). The complexity of the construction of these networks is shown to be comparable with the complexity of existing algorithms that design multicast scalar linear network-error correcting codes. Finally, we also show that linear network coding is not sufficient for the general network-error correction (detection) problem with arbitrary demands. In particular, for the same number of network errors, we show a network for which there is a nonlinear network-error detecting code satisfying the demands at the sinks, whereas there are no linear network-error detecting codes that do the same.
Resumo:
Drawing inspiration from real world interacting systems, we study a system consisting of two networks that exhibit antagonistic and dependent interactions. By antagonistic and dependent interactions we mean that a proportion of functional nodes in a network cause failure of nodes in the other, while failure of nodes in the other results in failure of links in the first. In contrast to interdependent networks, which can exhibit first-order phase transitions, we find that the phase transitions in such networks are continuous. Our analysis shows that, compared to an isolated network, the system is more robust against random attacks. Surprisingly, we observe a region in the parameter space where the giant connected components of both networks start oscillating. Furthermore, we find that for Erdos-Renyi and scale-free networks the system oscillates only when the dependence and antagonism between the two networks are very high. We believe that this study can further our understanding of real world interacting systems.
Resumo:
We address the problem of passive eavesdroppers in multi-hop wireless networks using the technique of friendly jamming. The network is assumed to employ Decode and Forward (DF) relaying. Assuming the availability of perfect channel state information (CSI) of legitimate nodes and eavesdroppers, we consider a scheduling and power allocation (PA) problem for a multiple-source multiple-sink scenario so that eavesdroppers are jammed, and source-destination throughput targets are met while minimizing the overall transmitted power. We propose activation sets (AS-es) for scheduling, and formulate an optimization problem for PA. Several methods for finding AS-es are discussed and compared. We present an approximate linear program for the original nonlinear, non-convex PA optimization problem, and argue that under certain conditions, both the formulations produce identical results. In the absence of eavesdroppers' CSI, we utilize the notion of Vulnerability Region (VR), and formulate an optimization problem with the objective of minimizing the VR. Our results show that the proposed solution can achieve power-efficient operation while defeating eavesdroppers and achieving desired source-destination throughputs simultaneously. (C) 2015 Elsevier B.V. All rights reserved.