216 resultados para Photosynthetic electron rate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the applications of Auger electron spectroscopy in surface analysis have by far outweighed its use as a tool to investigate electron states of solids and surfaces, there are a variety of situations where Auger spectroscopy provides unique information. Apart from the chemical shifts, Auger intensities are useful in determining the number of d-electron states in transition metal systems. Auger spectroscopy is a good probe to investigate the surface oxidation of metals. In addition to the intra-atomic Auger transitions, inter-atomic transitions observed in oxides and other systems reveal the nature of electron states of surfaces. Charge-transfer and hybridization effects in alloys are also usefully studied by Auger spectroscopy. Auger electron spectroscopy has not been a popular technique to investigate adsorption of molecules on surfaces, but the technique is useful to obtain fingerprints of surface species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impression creep behaviour of zinc is studied in the range 300 to 500 K and the results are compared with the data from conventional creep tests. The steady-state impression velocity is found to exhibit the same stress and temperature dependence as in conventional tensile creep with the same power law stress exponent. Also studied is the effect of indenter size on the impression velocity. The thermal activation parameters for plastic flow at high temperatures derived from a number of testing techniques agree reasonably well. Grain boundary sliding is shown to be unimportant in controlling the rate of plastic flow at high temperatures. It is observed that the Cottrell-Stokes law is obeyed during high-temperature deformation of zinc. It is concluded that a mechanism such as forest intersection involving attractive trees controls the high-temperature flow rather than a diffusion mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electronic excitation in H2O, H2S, H2Se and H2Te molecules has been studied by the EELS technique. Spectra of H2S and H2Se are remarkably similar with the 1b1-nd transition most intense. The intensity of the first transition 1b1-nsa1 decreases through H2O to H2Se and this transition is absent in H2Te. Transitions observed by EELS have been compared with optical absorption studies. A correlation diagram of the occupied and the excited states has been provided for these four molecules by making use of UVPES and EELS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics of reactions with low internal barriers are studied both analytically and numerically for two different models. Exact expressions for the average rate,kI, are obtained by solving the associated first passage time problems. Both the average rate constant, kI, and the numerically calculated long-time rate constant, kL, show a fractional power law dependence on the barrier height for very low barriers. The crossover of the reaction dynamics from low to high barrier is investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental evidence for strong electron-electron interactions in polyacetylene is presented. These include (i) observation of a dipole forbidden state below the optical gap, (ii) observation of negative spin densities at sites at which noninteracting models predict zero spin density (iii) vanishing optical gap, in the infinite chain limit, in the closely related symmetrical linear cyanine dyes. To correctly explain these features it is necessary to solve correlated model Hamiltonians. Using diagrammatic valence bond method model exact solutions of correlated models of finite-size systems can be obtained and various physical properties of the low-lying states can be computed. These properties, when extrapolated to the infinite chain limit explain many of the experimental features observed in polyacetylene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general theory is evolved for a class of macrogrowth models which possess two independent growth-rates. Relations connecting growth-rates to growth geometry are established and some new growth forms are shown to result for models with passivation or diffusion-controlled rates. The corresponding potentiostatic responses, their small and large time behaviours and peak characteristics are obtained. Numerical transients are also presented. An empirical equation is derived as a special case and an earlier equation is corrected. An interesting stochastic result pertaining to nucleation events in the successive layers is proved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High resolution electron microscopic (HREM) investigation of potassiumbeta-alumina and the related gallate and ferrite has revealed that whereas the aluminate and gallate are highly disordered, consisting of random sequence ofbeta andbetaPrime units, the ferrite is more ordered. The aluminate and gallate are sensitive to electron beam irradiation exhibiting beam-induced damage similar to sodiumbetaPrime-alumina. Significantly, the ferrite is beamstable, the difference in behaviour amongst these related oxides arising from the different mechanisms by which alkali metal nonstoichiometry is accommodated. Barium hexaaluminate and hexaferrite are both highly ordered; specimens prepared by the barium borate flux method exhibit a new radic3a×radic3a superstructure of the hexagonal magnetoplumbite cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complexes of I2 with diethyl ether and triethylamine and of Br, with diethyl ether have been investigated in the vapor phase for the first time by employing electron energy loss spectroscopy. Besides the CT bands, blue-shifted vacuum-UV bands of the halogens have been assigned; the amine-I, system appears to exhibit two CT bands,associated with two different excited states of the complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An indigenous electron energy loss spectrometer has been designed and fabricated for the study of free molecules. The spectrometer enables the recording of low-resolution electronic spectra of molecules inthe vapour phase with ready access to the vacuum ultraviolet region. Electron energy loss spectra of aliphatic alcohols and carbonyl compounds as wellas of benzene derivatives have been recorded with the indigenous spectrometer and the electronic transitions in these molecules discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here that the structural origin of an easily reversible Ge15Te83Si2 glass can be a promising candidate for phase change random access memories. In situ Raman scattering studies on Ge15Te83Si2 sample, undertaken during the amorphous set and reset processes, indicate that the degree of disorder in the glass is reduced from off to set state. It is also found that the local structure of the sample under reset condition is similar to that in the amorphous off state. Electron microscopic studies on switched samples indicate the formation of nanometric sized particles of c-SiTe2 structure. ©2009 American Institute of Physics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper, the size and strain rate effects on ultra-thin < 100 >/{100} Cu nanowires at an initial temperature of 10 K have been discussed. Extensive molecular dynamics (MD) simulations have been performed using Embedded atom method (EAM) to investigate the structural behaviours and properties under high strain rate. Velocity-Verlet algorithm has been used to solve the equation of motions. Two different thermal loading cases have been considered: (i) Isothermal loading, in which Nose-Hoover thermostat is used to maintain the constant system temperature, and (ii) Adiabatic loading, i.e., without any thermostat. Five different wire cross-sections were considered ranging from 0.723 x 0.723 nm(2) to 2.169 x 2.169 nm(2) The strain rates used in the present study were 1 x 10(9) s(-1), 1 x 10(8) s(-1), and 1 x 10(7) s(-1). The effect of strain rate on the mechanical properties of copper nanowires was analysed, which shows that elastic properties are independent of thermal loading for a given strain rate and cross-sectional dimension of nanowire. It showed a decreasing yield stress and yield strain with decreasing strain rate for a given cross- section. Also, a decreasing yield stress and increasing yield strain were observed for a given strain rate with increasing cross-sectional area. Elastic modulus was found to be similar to 100 GPa, which was independent of processing temperature, strain rate, and size for a given initial temperature. Reorientation of < 100 >/{100} square cross-sectional copper nanowire into a series of stable ultra-thin Pentagon copper nanobridge structures with dia of similar to 1 nm at 10 K was observed under high strain rate tensile loading. The effect of isothermal and adiabatic loading on the formation of such pentagonal nanobridge structure has been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical models of IEEE 802.11-based WLANs are invariably based on approximations, such as the well-known mean-field approximations proposed by Bianchi for saturated nodes. In this paper, we provide a new approach for modeling the situation when the nodes are not saturated. We study a State Dependent Attempt Rate (SDAR) approximation to model M queues (one queue per node) served by the CSMA/CA protocol as standardized in the IEEE 802.11 DCF. The approximation is that, when n of the M queues are non-empty, the attempt probability of the n non-empty nodes is given by the long-term attempt probability of n saturated nodes as provided by Bianchi's model. This yields a coupled queue system. When packets arrive to the M queues according to independent Poisson processes, we provide an exact model for the coupled queue system with SDAR service. The main contribution of this paper is to provide an analysis of the coupled queue process by studying a lower dimensional process and by introducing a certain conditional independence approximation. We show that the numerical results obtained from our finite buffer analysis are in excellent agreement with the corresponding results obtained from ns-2 simulations. We replace the CSMA/CA protocol as implemented in the ns-2 simulator with the SDAR service model to show that the SDAR approximation provides an accurate model for the CSMA/CA protocol. We also report the simulation speed-ups thus obtained by our model-based simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gelatin-g-poly(methyl acrylate) and gelatin-g-poly(acrylonitrile) copolymers were prepared in an aqueous medium using K2S2O8 initiator. A plausible mechanism has been put forward for the observed grafting behavior of monomers. Gelatin-g-PAN showed a greater resistance to mixed bacterial inolucum compared to gelatin-g-PMA samples. The rate of degradation decreased with the increase in grafting efficiency. A parallel set of experiments carried out by employing the samples as the only source of both carbon and nitrogen showed a marginal but definite increase in the utilization of the polymer. The nitrogen analysis also showed the utilization of the polymer. Scanning electron micographs of the polymer films do show extensive pitting after microbiological testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discovery of a solid exhibiting m 3 5 point group symmetry by Shechtman et. al. (l) in a rapidly solidified Al-14at%Mn alloy has activated intensive studies of a new class of solids, termed as quasicrystals (2). While the original discovery reported the existence of quasicrystals in AI-Mn. AI-Fe and AI-Cr alloys, subsequent work has revealed their existence in Mg-Zn-Al(3,4), Mg-A]-Cu(5), AI-Mn-Si(6) and Ti-Ni-V(7) alloys (Table l).