100 resultados para Permeability.
Resumo:
The Cobalt ferrite (CoFe2O4) powders were synthesized by Co-precipitation method. The as prepared ferrite powders were incorporated into a polyaniline matrix at various volumetric ratios. The as prepared composites of ferrite and polyaniline powders were characterized using X-ray diffraction (XRD), transmission electron microscope (TEM). The particle size of CoFe2O4 is found to be 20 nm. The saturation magnetization (M-s) of all the composites was found to be decreasing with decrease of ferrite content, while coercivity (H-c) remained at the value corresponding to pure cobalt ferrite nanopowders. The complex permittivity (epsilon' and epsilon `') and permeability (mu' and mu `') of composite samples were measured in the range of 1 MHz to 1.1 GHz. The value of epsilon' and mu' found to be increased with ferrite volume concentration.
Resumo:
A new, flexible, gas barrier material has been synthesized by exfoliating organically modified nano-clays (MMT) in the blends of Surlyn (PEMA) using a copolymer of vinyl alcohol (EVOH) and demonstrated as a gas barrier material. The materials were characterized by Fourier transform infra red (FTIR) and UV-visible spectroscopy, differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA) and tensile studies. The oxygen and water-vapor permeabilities of the fabricated films were determined by calcium degradation test and a novel permeability setup based on cavity ring down spectroscopy, respectively. Hierarchical simulations of these materials helped us to understand the effect of intermolecular interactions on diffusivities of oxygen and water molecules in these materials. Schottky structured poly(3-hexylthiophene) based organic devices were encapsulated with the fabricated films and aging studies were carried under accelerated conditions. Based on permeability test results and accelerated aging studies, the fabricated PEMA/EVOH/MMT composites were found to be effective in decreasing the permeabilities for gases by about two orders of magnitude and maintaining the lifetime of organic devices.
Resumo:
In this study, mesoporous silica-cyclic olefin copolymer nanocomposite films were fabricated by solution casting. With an increase in silica loading, the stiffness of the matrix increased. The nanocomposite film shows increased strain to failure with moisture after aging by matrix plasticization. The storage modulus and loss factor for samples with silica content show better results compared with pristine polymer, as indicated by dynamic mechanical analysis. The interaction between filler-polymer chain exhibit hydrophobicity compared to the neat polymer. Water absorption studies at room temperature and near the T-g of the polymer (similar to 64 degrees C) were carried out. The nanocomposites up to 4 wt% filler reduces the water diffusion by forming hydrogen and chemical bonding. The result by calcium degradation test method for moisture permeability and Schottky structured organic device encapsulation under weathering condition confirms the effective reinforcement effect of silica particles in the matrix. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Lime–fly ash reactions play a key role in improving the mechanical strength and tailoring the permeability characteristics of compacted fly ash. Activation of fly ash–lime pozzolanic reactions should accelerate the rate of strength development and possibly mobilize higher compressive strengths, facilitating improved engineering performance of fly ash amended materials. This paper makes an assessment of activation of lime–fly ash reactions by curing compacted fly ash–lime specimens at ambient (25°C) and at elevated temperature (80°C). The kinetics of fly ash–lime reactions are examined by monitoring the reacted lime as a function of curing period and temperature. The influence of variations in fly ash/lime content and dry density on the compressive strength developed by specimens at both temperatures is evaluated. The thermodynamic parameters for the fly ash–lime reactions have also been examined. Experimental results showed that curing at 80°C for 24 h accelerated fly ash–lime reactions such that it caused the steam cured (SC) specimens to evelop 1.21–2.44 fold larger strengths than room-temperature cured (RTC) specimens cured at 25°C for 28 days. Analysis of thermodynamic parameters indicated that the fly ash–lime reactions are thermodynamically favored at fly ash contents of 50–70% and lime additions of 16–20%, and the reactions are endothermic in nature. DOI: 10.1061/(ASCE)MT.1943-5533.0000482. © 2012 American Society of Civil Engineers.
Resumo:
Saccharomyces boulardii was encapsulated by layer-by-layer technique (LbL) using oppositely charged polyelectrolytes, chitosan and dextran sulfate to protect from degradation during its gastrointestinal transit. The protective effect of the coating was evaluated by checking viability after subjecting the coated cells to lyophilisation and simulated gastrointestinal conditions. During lyophilization, coated S. boulardii was found to have an enhanced viability of 7.74 +/- 2.00 log CFU/100 mg (5.62 x 10(6) +/- 2.12 CFU/100 mg) and 5.53 +/- 1.85 log CFU/100 mg (3.46 x 10(5) 1.73 CFU/100 mg) for uncoated cells. On sequential treatment with simulated gastric and intestinal juice, the coated cells had a viability of 4.59 +/- 1.52 log CFU/100 mg (3.8 x 104 +/- 1.52 CFU/100 mg) while only 1.90 +/- 0.80 log CFU/100 mg (0.79 x 102 +/- 0.81 CFU/100 mg) of uncoated cells survived. Confocal studies displayed the selective permeability of the coated cells which plays a significant role in maintaining the integrity and viability of the yeast cells. This clearly indicates that LbL is an efficient protective encapsulation technique and it could be potentially used for improving therapeutic applications of yeast. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Ultra-small crystals of undoped and Eu-doped gadolinium oxide (Gd2O3) were synthesised by a simple, rapid microwave-assisted route, using benzyl alcohol as the reaction solvent. XRD, XPS and TEM analysis reveal that the as-prepared powder material consists of nearly monodisperse Gd2O3 nanocrystals with an average diameter of 5.2 nm. The nanocrystals show good magnetic behaviour and exhibit a larger reduction in relaxation time of water protons than the standard Gd-DTPA complex currently used in MRI imaging. Cytotoxicity studies (both concentration- and time-dependent) of the Gd2O3 nanocrystals show no adverse effect on cell viability, evidencing their high biological compatibility. Finally, Eu:Gd2O3 nanocrystals were prepared by a similar route and the red luminescence of Eu3+ activator ions was used to study the cell permeability of the nanocrystals. Red fluorescence from Eu3+ ions observed by fluorescence microscopy shows that the nanocrystals (Gd2O3 and Eu:Gd2O3) can permeate not only the cell membrane but can also enter the cell nucleus, rendering them candidate materials not only for MRI imaging but also for drug delivery when tagged or functionalized with specific drug molecules.
Resumo:
Silver nanoparticles (AgNPs) pose a high risk of exposure to the natural environment owing to their extensive usage in various consumer products. In the present study we attempted to understand the harmful effect of AgNPs at environmentally relevant low concentration levels (<= 1 ppm) towards two different freshwater bacterial isolates and their consortium. The standard plate count assay suggested that the AgNPs were toxic towards the fresh water bacterial isolates as well as the consortium, though toxicity was significantly reduced for the cells in the consortium. The oxidative stress assessment and membrane permeability studies corroborated with the toxicity data. The detailed electron microscopic studies suggested the cell degrading potential of the AgNPs, and the FT-IR studies confirmed the involvement of the surface groups in the toxic effects. No significant ion leaching from the AgNPs was observed at the applied concentration levels signifying the dominant role of the particle size, and size distribution in bacterial toxicity. The reduced toxicity for the cells in the consortium than the individual isolates has major significance in further studies on the ecotoxicity of the AgNPs. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Strong magnetoelectric (ME) interaction was exhibited at both dc and microwave frequencies in a lead-free multiferroic particulate composites of Na0.5Bi0.5TiO3 (NBT) and MnFe2O4 (MFO) multiferroic, which were prepared by sol-gel route. The room temperature permeability measurements were carried out in the frequency range of 1 MHz-1 GHz. A systematic study of structural, magnetic and ME properties were undertaken. The room temperature ferromagnetic resonance (FMR) was studied. Strong ME coupling is demonstrated in 70NBT-30MFO composite by an electrostatically tunable FMR field shift up to 428 Oe (at E = 4 kV/cm), which increases to a large value of 640 Oe at E = 8 kV/cm. Furthermore, these lead-free multiferroic composites exhibiting electrostatically induced magnetic resonance field at microwave frequencies provide great opportunities for electric field tunable microwave devices.
Resumo:
In this paper, linear stability analysis on a Newtonian fluid film flowing under the effect of gravity over an inclined porous medium saturated with the same fluid in isothermal condition is carried out. The focus is placed on the effect of the anisotropic and inhomogeneous variations in the permeability of the porous medium on the shear mode and surface mode instabilities. The fluid-porous system is modelled by a coupled two-dimensional Navier-Stokes/Darcy problem. The perturbation equations are solved numerically using the Chebyshev collocation method. Detailed stability characteristics as a function of the depth ratio (the ratio of the depth of the fluid layer to that of the porous layer), the anisotropic parameter (the ratio of the permeability in the direction of the basic flow to that in the direction transverse to the basic flow) and the inhomogeneity functions are presented.
Resumo:
A layer-by-layer approach was used for the fabrication of multilayer films for ultra high gas barrier applications. The ultra high gas barrier material was designed by incorporating Nafion layer in between bilayers of poly(ethylene imine) and poly(acrylic acid) on a Surlyn substrate. When the barrier film with self-assembled Nafion is exposed to the moist environment, Nafion absorbs and desorbs water molecules simultaneously, thereby reducing the ingress of moisture in to the film. In order to study the effect of Nafion, the fabricated barrier materials with and without the presence of Nafion were tested for water vapor barrier properties. The barrier films were further used for encapsulating organic photovoltaic devices and were evaluated for their potential use in barrier applications. The devices encapsulated with the films containing Nafion exhibited better performance when subjected to accelerated aging conditions. Therefore, this study demonstrates the effectiveness of self-assembled Nafion in reducing the water vapor permeability by nearly five orders of magnitude and in increasing the lifetimes of organic devices by similar to 22 times under accelerated weathering conditions.
Resumo:
Two unique materials were developed, like graphene oxide (GO) sheets covalently grafted on to barium titanate (BT) nanoparticles and cobalt nanowires (Co-NWs), to attenuate the electromagnetic (EM) radiations in poly(vinylidene fluoride) (PVDF)-based composites. The rationale behind using either a ferroelectric or a ferromagnetic material in combination with intrinsically conducting nanoparticles (multiwall carbon nanotubes, CNTs), is to induce both electrical and magnetic dipoles in the system. Two key properties, namely, enhanced dielectric constant and magnetic permeability, were determined. PVDF/BT-GO composites exhibited higher dielectric constant compared to PVDF/BT and PVDF/GO composites. Co-NWs, which were synthesized by electrodeposition, exhibited saturation magnetization (M-s) of 40 emu/g and coercivity (Hc) of 300 G. Three phase hybrid composites were prepared by mixing CNTs with either BT-GO or Co-NWs in PVDF by solution blending. These nanoparticles showed high electrical conductivity and significant attenuation of EM radiations both in the X-band and in the Ku-band frequency. In addition, BT-GO/CNT and Co-NWs/CNT particles also enhanced the thermal conductivity of PVDF by ca. 8.7- and 9.3-fold in striking contrast to neat PVDF. This study open new avenues to design flexible and lightweight electromagnetic interference shielding materials by careful selection of functional nanoparticles
Resumo:
There is a persistent need to assess the effects of TiO2 nanoparticles on the aquatic ecosystem owing to their increasing usage in consumer products and risk of environmental release. The current study is focused on TiO2 nanoparticle-induced acute toxicity at sub-ppm level (<= 1 ppm) on the three different freshwater sediment bacterial isolates and their consortium under two different irradiation (visible light and dark) conditions. The consortium of the bacterial isolates was found to be less affected by the exposure to the nanoparticles compared to the individual cells. The oxidative stress contributed considerably towards the cytotoxicity under both light and dark conditions. A statistically significant increase in membrane permeability was noted under the dark conditions as compared to the light conditions. The optical and fluorescence microscopic images showed aggregation and chain formation of the bacterial cells, when exposed to the nanoparticles. The electron microscopic (SEM, TEM) observations suggested considerable damage of cells and bio-uptake of nanoparticles. The exopolysaccrides (EPS) production and biofilm formation were noted to increase in the presence of the nanoparticles, and expression of the key genes involved in biofilm formation was studied by RT-PCR. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Ni0.4Zn0.2Mn0.4Fe2O4 nanopowders were prepared by auto-combustion method. The as-synthesized powders were characterized using X-ray diffraction (XRD) and thermo-gravimetric-differential thermal analysis (TG-DTA), and the powders were densified at different temperatures 400 degrees C, 500 degrees C, 600 degrees C and 700 degrees C/4 hrs using conventional sintering method. The sintered samples were characterized by XRD and transmission electron microscope (TEM). The bulk densities of the samples were increased with an increase of sintering temperature. The grain sizes of all the samples vary in between 18 nm to 30 nm. The hysteresis loops show high saturation magnetization and low coercivity, indicates that it is a soft material. The incremental permeability (permeability with magnetic field superposition) was influenced by both Delta M and H-c. A sample with higher initial permeability and favoured the attainment of a higher incremental permeability. The Q-factor was mainly determined by the sintered density and microstructure. To summarize, a uniform and dense microstructure with relatively small average grain size is favourable for obtaining better dc-bias-superposition characteristics, including permeability and Q-factor.
Resumo:
Systematic experiments have been carried out by monitoring the in-situ pressure and thickness profiles for three different configurations, viz., flat plate, flat plate with a central circular hole, and an L-section using vacuum assisted resin transfer molding (VARTM) process. The effect of anisotropy on resin flow has been quantified by considering uni-directional carbon fiber preforms with 0 degrees and 90 degrees orientation to the flow direction for each configuration. A quasi-isotropic 45 degrees/0 degrees/-45 degrees/90 degrees](S) layup has also been included for flat plate case. Additionally, the study has been extended to understand the effect of using high permeability medium for each configuration. Fluid pressure profiles and thickness variation profiles have been obtained using an array of pressure sensors and linear variable differential transformers for each configuration. Experimental data reveal that anisotropy (due to changing fiber orientations), configuration, and gravity significantly change fluid pressure and displacement fields obtained during VARTM.
Resumo:
Nanocrystalline strontium hexaferrites SrFe12-2x (Ni2+-Zr4+)(x)O-19] nanoparticles were successfully synthesized by sal gel process. For densification the powders were sintered at 950 degrees C/4 h. The sintered samples were characterized by X-ray diffraction (XRD), surface area measurement, and field emission scanning electron microscope (FESEM). The lattice parameter a is almost constant but c increased with x upto 0.8 and then decreased. The frequency dependent complex permittivity (epsilon and epsilon `' and permeability (mu' and mu `') and magnetic properties such as saturation magnetization (M-s), coercive field (H-c) were studied. If is observed that saturation magnetization increased gradually from 57.82 emuig to 67.2 emufg as x increased from 0.2 to 0.4 and then decreased from 672 emufg to 31.63 ernufg for x=1.0. In present study, x=0.4 shows high value of M-s 67.2 emu/g. The real part of permittivity (epsilon') remains constant upto a frequency 1 GHz and increases further with an increase of frequency, a resonance and anti resonance peak was observed above 1 GHz for all the samples. In real part of permeability (mu') the relaxation frequency is observed above 1 GHz for all the samples and it is attributed to the domain wall motion. It is well known that the permeability for polycrystalline ferrites can be described as the superposition of two different magnetizing mechanisms: spin rotation and domain wall motion. These low coercive strontium hexaferrites are suitable for magnetic recording applications in hard disks, floppy disks, video tapes, etc. (C) 2015 Elsevier B.V. All rights reserved.