116 resultados para Particle lattice effect


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microstructural evolution was studied in a near-lamellar two phase (alpha(2) + gamma) Ti-47Al-2Cr-2Nb alloy under high temperature creep and exposure conditions. The aim of this study was to probe the role of stress orientation, with respect to lamellar plates, on microstructural changes during primary creep. Creep testing was complemented with SEM and TEM based microstructural characterization. It was observed that retention of excess alpha(2) resulted in an unstable microstructure. Under stress and temperature, excess alpha(2) was lost and Cr-rich precipitates formed. Depending on stress orientation, the sequence of precipitates formed was different. alpha(2) loss was accompanied by formation of the non-equilibrium C14 Laves phase when lamellar plates were oriented parallel to the stress axis. In contrast, alpha(2) loss did not result in formation of the C14 phase in perpendicular samples. It was concluded that C14 formed preferentially in certain test orientations because of its effectiveness in relieving residual stresses in alpha(2) that arose from lattice misfit and modulus mismatch. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A few variance reduction schemes are proposed within the broad framework of a particle filter as applied to the problem of structural system identification. Whereas the first scheme uses a directional descent step, possibly of the Newton or quasi-Newton type, within the prediction stage of the filter, the second relies on replacing the more conventional Monte Carlo simulation involving pseudorandom sequence with one using quasi-random sequences along with a Brownian bridge discretization while representing the process noise terms. As evidenced through the derivations and subsequent numerical work on the identification of a shear frame, the combined effect of the proposed approaches in yielding variance-reduced estimates of the model parameters appears to be quite noticeable. DOI: 10.1061/(ASCE)EM.1943-7889.0000480. (C) 2013 American Society of Civil Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ingots with compositions CrSi2-x (with 0 < x < 0.1) were synthesized by vacuum arc melting followed by uniaxial hot pressing for densification. This paper reports the temperature and composition dependence of the electrical resistivity, Seebeck coefficient, and thermal conductivity of CrSi2-x samples in the temperature range of 300 K to 800 K. The silicon-deficient samples exhibited substantial reductions in resistivity and Seebeck coefficient over the measured temperature range due to the formation of metallic secondary CrSi phase embedded in the CrSi2 matrix phase. The thermal conductivity was seen to exhibit a U-shaped curve with respect to x, exhibiting a minimum value at the composition of x = 0.04. However, the limit of the homogeneity range of CrSi2 suppresses any further decrease of the lattice thermal conductivity. As a consequence, the maximum figure of merit of ZT = 0.1 is obtained at 650 K for CrSi1.98.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nanocomposites of xTiO(2)+(1-x)Ni0.53Cu0.12Zn0.35Fe2O4 (where 0 <= x >= 1) were prepared using microwave hydrothermal (M H) method at 165 degrees C/45 min. The as-synthesized powders were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). The particle size of the powder varies from 18 to 35 nm. The as prepared powders were densified at 500 degrees C/30 min using microwave sintering method. The sintered composites were characterized by XRD and scanning electron microscopy (SEM). The bulk densities of the present composites were increasing with the addition of TiO2. The grain sizes of all the composite vary between 65 nm and 90 nm. The addition of TiO2 to ferrite increased the dielectric properties (epsilon' and epsilon `') also the resonant frequency of all the composites was found to be greater than 1 GHz. The imaginary part of permeability mu `' was found to increase with an increase of TiO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The change in the growth rate of the Nb3Sn product phase because of Ti addition is studied for solid Nb(Ti)-liquid Sn interactions. The growth rate increased from no Ti to 1 at.% and 2 at.% of Ti in Nb, and the activation energy decreased from 221 kJ/mol to 146 kJ/mol. Based on the estimated values, the role of grain boundary and lattice diffusion is discussed in light of the possibility of increased grain boundary area and point defects such as antisites and vacancies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of the flow of a granular material down an inclined plane starting from rest is studied as a function of the base roughness. In the simulations, the particles are rough frictional spheres interacting via the Hertz contact law. The rough base is made of a random configuration of fixed spheres with diameter different from the flowing particles, and the base roughness is decreased by decreasing the diameter of the base particles. The transition from an ordered to a disordered flowing state at a critical value of the base particle diameter, first reported by Kumaran and Maheshwari Phys. Fluids 24, 053302 (2012)] for particles with the linear contact model, is observed for the Hertzian contact model as well. The flow development for the ordered and disordered flows is very different. During the development of the disordered flow for the rougher base, there is shearing throughout the height. During the development of the ordered flow for the smoother base, there is a shear layer at the bottom and a plug region with no internal shearing above. In the shear layer, the particles are layered and hexagonally ordered in the plane parallel to the base, and the velocity profile is well approximated by Bagnold law. The flow develops in two phases. In the first phase, the thickness of the shear layer and the maximum velocity increase linearly in time till the shear front reaches the top. In the second phase, after the shear layer encompasses the entire flow, there is a much slower increase in the maximum velocity until the steady state is reached. (C) 2013 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of annealing on structural defects and d(0) ferromagnetism in SnO2 nanoparticles prepared by solution combustion method is investigated. The as-synthesized SnO2 nanoparticles were annealed at 400-800 degrees C for 2 h, in ambient conditions. The crystallinity, size, and morphology of the samples were studied using x-ray diffraction and transmission electron microscopy studies. The annealing results in grain growth due to coarsening as well as reduction in oxygen vacancies as confirmed by Raman spectroscopy, photoluminescence spectroscopy, and x-ray photoelectron spectroscopy. All the as synthesized and annealed samples exhibit room temperature ferromagnetism (RTFM) with distinct hysteresis loops and the saturation magnetization as high as similar to 0.02 emu/g in as-synthesized samples. However, the saturation magnetization is drastically reduced with increasing annealing temperature. Further the presence of singly charged oxygen vacancies (V-o(-) signal at g-value 1.99) is confirmed by electron paramagnetic resonance studies, which also diminish with increasing annealing temperature. The observed diminishing RTFM and simultaneous evidences of diminishing O vacancies clearly indicate that RTFM is driven by defects in oxide lattice and confirms primary role of oxygen vacancies in inducing ferromagnetic ordering in metal oxide semiconductors. The study also provides improved fundamental understanding regarding the ambiguity in the origin of intrinsic RTFM in semiconducting metal oxides and projects their technological application in the field of spintronics. (C) 2013 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A binary mixture of oppositely charged colloidal particles can self-assemble into either a substitutionally ordered or substitutionally disordered crystalline phase depending on the nature and strength of interactions among the particles. An earlier study had mapped out favorable inter-particle interactions for the formation of substitutionally ordered crystalline phases from a fluid phase using Monte Carlo molecular simulations along with the Gibbs-Duhem integration technique. In this paper, those studies are extended to determine the effect of fluid phase composition on formation of substitutionally ordered solid phases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

First principles calculations were done to evaluate the lattice parameter, cohesive energy and stacking fault energies of ordered gamma' (Ll(2)) precipitates in superalloys as a function of composition. It was found that addition of Ti and Ta lead to an increase in lattice parameter and decrease in cohesive energy, while Ni antisites had the opposite effect. Ta and Ti addition to stoichiometric Ni3Al resulted in an initial increase in the energies of APB((111)), CSF(111), APB((001)) and SISF(111). However, at higher concentrations, the fault energies decreased. Addition of Ni antisites decreased the energy of all four faults monotonically. A model based on nearest neighbor bonding was used for Ni-3(Al, Ta), Ni-3(Al, Ti) and Ni-3(Al, Ni) pseudo-binary systems and extended to pseudo- ternary Ni-3(Al, Ta, Ni) and Ni-3(Al, Ti, Ni) systems. Recipes were developed for predicting lattice parameters, cohesive energies and fault energies in pseudo- ternary systems on the basis of coefficients derived from simpler pseudobinary systems. The model predictions were found to be in good agreement with first principles calculations for lattice parameters, cohesive energies, and energies of APB((111)) and CSF(111).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Gd3+ doped Y3-xGdxFe5O12 (x=0.0, 0.05, 0.15, and 0.25) nanopowders were prepared using modified sol-gel route. The structural characterizations such as X-ray diffraction, transmission electron microscopy has been carried out. The nanopowders were sintered at 700 degrees C/3 h. The lattice parameters and density of the samples were increased with an increase of Gd3+ concentration. The microstructure was analyzed using atomic force microscopy. The room temperature dielectric (epsilon' and epsilon `') and magnetic (mu' and mu `') properties were measured in the frequency range 5-50 GHz. with Gd3+ the dielectric properties were enhanced, but there is a decrease in the magnetic properties. The room temperature magnetization studies were carried out up to 1.5 T. the saturation and remnant magnetization were decreased with an increase of gadolinium concentration. These garnets have low permeability, low losses and a broad distribution of FMR line width which makes them a promising material for microwave devices can be used in the high frequency range i.e. up to 50 GHz. (C) 2013 Elsevier BM. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evolution of texture and concomitant grain refinement during Equal Channel Angular Pressing (ECAP) of Ti - 13Nb - 13Zr alloy has been presented. Sub-micron sized equiaxed grains with narrow grain size distribution could be achieved after eight pass at 873 K. A characteristic ECAP texture evolved in alpha phase till four passes while the evolution of characteristic ECAP texture in the beta phase could be observed only beyond the fourth pass. On increasing the deformation up to eight passes, the texture in alpha phase weakens while the beta phase shows an ideal ECAP texture. A weaker texture, low dislocation density and high crystallite size values in alpha phase suggest the occurrence of dynamic recrystallization. The absence of texture evolution in beta phase till four passes can be attributed to local lattice rotations. The characteristic ECAP texture in the eight pass deformed sample is attributed to delayed dynamic recrystallization in the beta phase. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fracture characteristics of Al-Si based eutectic alloy are investigated in the unmodified and modified conditions under compression. The investigations are carried out at different strain rates and temperatures. Fracture of the alloy starts with eutectic Si particle fracture and modification plays an important role in particle fracture. The fraction of fractured particles is found to be always lesser in the modified condition than in the unmodified condition. Particle fracture increases with increase in strain. It is found that the Si particle fracture shows an increase with increase in strain rate and decreases with increase in temperature at 10% strain. Large and elongated particles show a greater tendency for fracture in the unmodified and modified conditions. Particle orientation plays an important role on fracture and the cracks are found to occur almost in a direction normal to the tensile strain imposed upon the particles by the deforming matrix in the unmodified alloy. The modified alloy shows a random distribution of fractured particles and crack orientation. The criteria of fracture based on dislocation pile-up mechanism and fiber loading explain the observed difference in particle fracture characteristics due to modification. The particle fracture for the modified alloy is also discussed in terms of Weibull statistics and the existing models of dispersion hardening. Particle/matrix interface decohesion is observed at higher strain rates and temperatures in the modified alloy. Dendritic rotation of 10 degrees is also observed at higher strain rates, which can increase the amount of particle fracture. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lithium stearate soap and layered MoS2 nanoparticles encapsulated in lithium stearate soap are prepared in the laboratory, and their lubricating properties are compared with respect to the particle and particle concentration. The tribotracks after friction test was investigated with Raman Spectroscopy, scanning electron microscopy (SEM) and 3D optical profilometry to understand the action mechanism. The status of the soap particles on a tribotrack changes with time, contact pressure and sliding speed. At low pressure and speed, individual solid undeformed soap particle stand proud of the surface and the topography shows marginal difference with sliding time. In these conditions, no frictional difference between the performance of grease with and without the nanoparticles is observed. Increasing the contact pressure and temperature (low speed and high speed) has a dramatic effect as the soap particles melt and the liquid soap flows over the track releasing the hitherto encapsulated nanoparticles. Consequently, the soap smears the track like a liquid, and the nanoparticles now come directly into the interface and are sheared to generate a low-friction tribofilm. At high particle concentration, the sliding time required for melting of the soap and release of MoS2 is reduced, and the tribofilm is more substantial and uniform consisting of smeared MoS2 and carboxylate soap as observed by SEM and 3D optical profilometry. A change in the Raman Spectra is observed with particle concentration, and this is related to morphology and microstructure of the tribofilm generated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zinc substituted cobalt ferrite powders {Co(1-x)ZnxFe2O4} (0.0 <= x <= 0.5) were prepared by the solution combustion method. The structural, morphological, magnetic and electrical properties of as synthesized samples were studied. Powder X-ray diffraction patterns reveals single phase, cubic spinel structure with space group No. Fd (3) over barm (227). As zinc concentration increases, the lattice constant increases and the crystallite size decreases. The minimum crystallite size of similar to 12 nm was observed for x = 0.5 composition. The synthesized ferrite compounds show ferrimagnetic behavior, with coercivity value of 10779 Oe (Hard ferrite) at 20 K and 1298 Oe (soft ferrite) at room temperature (RT). The maximum saturation magnetization recorded for the Co0.5Zn0.5Fe2O4 composition was 99.78 emu g(-1) and 63.83 emu g(-1) at 20 K and RT respectively. The dielectric parameters such as dielectric constant, loss tangent and AC conductivity were determined as a function of frequency at RT. The magnetic and dielectric properties of the samples illustrates that the materials were quite useful for the fabrication of nanoelectronic devices. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quinary chalcogenide compounds Cu2.1Zn0.9Sn1-xInxSe4 (0 <= x <= 0.1) were prepared by melting (1170K) followed by annealing (773 K) for 172 h. Powder X-ray diffraction (XRD) data accompanied by electron probe microanalysis (EPMA) and Raman spectra of all the samples confirmed the formation of a tetragonal kesterite structure with Cu2FeSnS4-type. The thermoelectric properties of all the samples were measured as a function of temperature in the range of 300-780K. The electrical resistivity of all the samples exhibits metallic-like behavior. The positive values of the Seebeck coefficient and the Hall coefficient reveal that holes are the majority charge carriers. The codoping of copper and indium leads to a significant increase of the electrical resistivity and the Seebeck coefficient as a function of temperature above 650 K. The thermal conductivity of all the samples decreases with increasing temperature. Lattice thermal conductivity is not significantly modified as the doping content may infer negligible mass fluctuation scattering for copper/zinc and indium/tin substitution. Even though, the power factors (S-2/rho) of indium-doped samples Cu2.1Zn0.9Sn1-xInxSe4 (x = 0.05, 0.075) are almost the same, the maximum zT = 0.45 at 773K was obtained for Cu2.1Zn0.9Sn0.925In0.075Se4 due to its smaller value of thermal conductivity. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim