172 resultados para Organization Structure
Resumo:
Binuclear complexes of rhodium(I) of the type [(dien)(X)Rh(μ-N-N)Rh(X)(dien)] (dien = 1,5-cyclooctadiene or norbornadiene; N-N = pyrazine, 4,4′-bipyridine or Phenazine and X = Cl or Br) with bridging heterocycles have been isolated and their reactions with carbon monoxide, 2,2′-bipyridine and 1,10-phenanthroline investigated. The crystal structure of [(COD)(Cl)Rh(μ-pyrazine)Rh(Cl)(COD)] has been determined.
Resumo:
Sr1−xPrxTiO3 has recently been shown to exhibit ferroelectricity at room temperature. In this paper powder x-ray and neutron-diffraction patterns of this system at room temperature have been analyzed to show that the system exhibits cubic (Pm-3m) structure for x<=0.05 and tetragonal (I4/mcm) for x>0.05. The redundancy of the noncentrosymmetric structural model (I4cm) in the ferroelectric state suggests the absence of long-range ordered ferroelectric domains and supports the relaxor ferroelectric model for this system.
Resumo:
The Watson-Crick type of base pairing is considered to be mandatory for the formation of duplex DNA. However, conformational calculations carried out in our laboratory, have shown that some combinations of backbone torsion angles and sugar pucker lead to duplexes with Hoogsteen type of base pairing also. Here we present the results of energy calculations performed on A-T containing doublet sequences in the D-form with both Hoogsteen and Watson-Crick type of base pairing and the 3 viable models for the A-T containing polynucleotide duplex poly[d(A-T)].
Resumo:
Ultraviolet irradiation of crystalline molecular inclusion complexes of deoxycholic acid with di-tert-butyl thioketone results in no reaction. The structure of the above complex has been determined via X-ray diffraction. The absence of expected photoreactions. namely, photoreduction and photooxidation, is rationalized on the basis of the X-ray structure analysis of the complex.
Resumo:
The cr~¢stal structure of [potassium(benzo-15-crown-5)](picrate) shows that in the complex the metal is sandwiched between two crowns andhas no interaction with plcrate.
Resumo:
Superconductivity is found in tetragonal La3−x Ba3+x Cu6O14+δ and La, Ba)6−x Sr x Cu6O14+δ even though they do not possess Cu-O chains or the K2NiF4 structure. Resistivity measurements confirm the occurrence of a transformation from chain-superconductivity to sheet-superconductivity in YBa2Cu3O7−δ as δ is varied in the range 0.0–0.5.
Resumo:
CIoH15NO282, Mr=245"0, orthorhombic, P21212 ~, a = 6.639 (2), b = 8.205 (2), c = 22.528(6)A, V= I227.2(6)A 3, z=4, Dm= 1.315, Dx= 1.326gem -3, MoKa, 2=0.7107A, 12= 3.63 cm -1, F(000) = 520, T= 293 K, R = 0.037 for 1115 significant reflections. The second-harmonicgeneration (SHG) efficiency of this compound is only 1/10th of the urea standard. The observed low second-order nonlinear response may be attributed to the unfavourable packing of the molecules in the crystal lattice.
Resumo:
Mixed ligand complexes of the type Ni(R-AB)(AC') and Ni(R-AC)(AB') where AB/AC denote N-bonded isonitroso- [3-ketoimino ligands, AB'/AC' denote the corresponding Obonded ligands and R = Me, Et, n-Pr are synthesised and characterised. The complexes are neutral with square planar geometry around nickel(II). The bonding isomerism of the isonitroso group is discussed on the basis of i.r. and 1H n.m.r. studies. The crystal structure of the title complex, Ni(n-Pr-IEAI)(IMAI') has been determined from diffractometer data by Patterson and Fourier methods and refined by least squares to R = 0.088 for 2209 observed reflections. Unit cell constants are: a = 11.945(2), b = 22.436(7), c = 13.248(5) ~, [3 = 95.13(2) ~ The space group is P2Jc with Z = 8. Niekel(II) has a square planar coordination of two imine nitrogens, an isonitroso-nitrogen (from n-Pr-IEAI) and another isonitrosooxygen (from IMAI').
Resumo:
M r = 188.22, monoclinic, P21/n, a = 6.219 (2), b= 10.508 (2), c=7.339 (1)A, t= 107.64 (2) °, V= 457 ,/k 3, Z = 2, D m - - 1.360 (3), D x = 1.366 (2)Mgm -3, ~,(MoKa) = 0.7107/~, #= 0.053 mm -I, F(000) = 200, T= 293 K. Final R = 5.8% for 614 significant reflections. The molecule, which does not possess a centre of symmetry, occupies a crystallographic centre of symmetry because of the statistical enantiomeric and rotational disorder. Latticeenergy calculations, based on van der Waals attractive and repulsive potentials, clearly show minima at the observed disordered positions.