86 resultados para Offset printing


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In conventional Raman spectroscopic measurements of liquids or surfaces the preferred geometry for detection of the Raman signal is the backscattering (or reflection) mode. For non-transparent layered materials, sub-surface Raman signals have been retrieved using spatially offset Raman spectroscopy (SORS), usually with light collection in the same plane as the point of excitation. However, as a result of multiple scattering in a turbid medium, Raman photons will be emitted in all directions. In this study, Monte Carlo simulations for a three-dimensional layered sample with finite geometry have been performed to confirm the detectability of Raman signals at all angles and at all sides of the object. We considered a non-transparent cuboid container (high density polyethylene) with explosive material (ammonium nitrate) inside. The simulation results were validated with experimental Raman intensities. Monte Carlo simulation results reveal that the ratio of sub-surface to surface signals improves at geometries other than backscattering. In addition, we demonstrate through simulations the effects of the absorption and scattering coefficients of the layers, and that of the diameter of the excitation beam. The advantage of collecting light from all possible 4 angles, over other collection modes, is that this technique is not geometry specific and molecular identification of layers underneath non-transparent surfaces can be obtained with minimal interference from the surface layer. To what extent all sides of the object will contribute to the total signal will depend on the absorption and scattering coefficients and the physical dimensions. Copyright (c) 2015 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper focuses on understanding the seismic response of geosynthetic reinforced retaining walls through shaking table tests on models of modular block and rigid faced reinforced retaining walls. Reduced-scale models of retaining walls reinforced with geogrid layers were constructed in a laminar box mounted on a uniaxial shaking table and subjected to various levels of sinusoidal base shaking. Models were instrumented with ultrasonic displacement sensors, earth pressure sensors and accelerometers. Effects of backfill density, number of reinforcement layers and reinforcement type on the performance of rigid faced and modular block walls were studied through different series of model tests. Performances of the walls were assessed in terms of face deformations, crest settlement and acceleration amplification at different elevations and compared. Modular block walls performed better than the rigid faced walls for the same level of base shaking because of the additional support derived by stacking the blocks with an offset. Type and quantity of reinforcement has significant effect on the seismic performance of both the types of walls. Displacements are more sensitive to relative density of the backfill and decrease with increasing relative density, the effect being more pronounced in case of unreinforced walls compared to the reinforced ones. Acceleration amplifications are not affected by the wall facing and inclusion of reinforcement. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogen, either in pure form or as a gaseous fuel mixture specie enhances the fuel conversion efficiency and reduce emissions in an internal combustion engine. This is due to the reduction in combustion duration attributed to higher laminar flame speeds. Hydrogen is also expected to increase the engine convective heat flux, attributed (directly or indirectly) to parameters like higher adiabatic flame temperature, laminar flame speed, thermal conductivity and diffusivity and lower flame quenching distance. These factors (adversely) affect the thermo-kinematic response and offset some of the benefits. The current work addresses the influence of mixture hydrogen fraction in syngas on the engine energy balance and the thermo-kinematic response for close to stoichiometric operating conditions. Four different bio-derived syngas compositions with fuel calorific value varying from 3.14 MJ/kg to 7.55 MJ/kg and air fuel mixture hydrogen fraction varying from 7.1% to 14.2% by volume are used. The analysis comprises of (a) use of chemical kinetics simulation package CHEMKIN for quantifying the thermo-physical properties (b) 0-D model for engine in-cylinder analysis and (c) in-cylinder investigations on a two-cylinder engine in open loop cooling mode for quantifying the thermo-kinematic response and engine energy balance. With lower adiabatic flame temperature for Syngas, the in-cylinder heat transfer analysis suggests that temperature has little effect in terms of increasing the heat flux. For typical engine like conditions (700 K and 25 bar at CR of 10), the laminar flame speed for syngas exceeds that of methane (55.5 cm/s) beyond mixture hydrogen fraction of 11% and is attributed to the increase in H based radicals. This leads to a reduction in the effective Lewis number and laminar flame thickness, potentially inducing flame instability and cellularity. Use of a thermodynamic model to assess the isolated influence of thermal conductivity and diffusivity on heat flux suggests an increase in the peak heat flux between 2% and 15% for the lowest (0.420 MW/m(2)) and highest (0.480 MW/m(2)) hydrogen containing syngas over methane (0.415 MW/m(2)) fueled operation. Experimental investigations indicate the engine cooling load for syngas fueled engine is higher by about 7% and 12% as compared to methane fueled operation; the losses are seen to increase with increasing mixture hydrogen fraction. Increase in the gas to electricity efficiency is observed from 18% to 24% as the mixture hydrogen fraction increases from 7.1% to 9.5%. Further increase in mixture hydrogen fraction to 14.2% results in the reduction of efficiency to 23%; argued due to the changes in the initial and terminal stages of combustion. On doubling of mixture hydrogen fraction, the flame kernel development and fast burn phase duration decrease by about 7% and 10% respectively and the terminal combustion duration, corresponding to 90%-98% mass burn, increases by about 23%. This increase in combustion duration arises from the cooling of the near wall mixture in the boundary layer attributed to the presence of hydrogen. The enhancement in engine cooling load and subsequent reduction in the brake thermal efficiency with increasing hydrogen fraction is evident from the engine energy balance along with the cumulative heat release profiles. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The collapse of the primordial gas in the density regime similar to 10(8)-10(10) cm(-3) is controlled by the three-body H-2 formation process, in which the gas can cool faster than free-fall time-a condition proposed as the chemothermal instability. We investigate how the heating and cooling rates are affected during the rapid transformation of atomic to molecular hydrogen. With a detailed study of the heating and cooling balance in a 3D simulation of Pop III collapse, we follow the chemical and thermal evolution of the primordial gas in two dark matter minihalos. The inclusion of sink particles in modified Gadget-2 smoothed particle hydrodynamics code allows us to investigate the long-term evolution of the disk that fragments into several clumps. We find that the sum of all the cooling rates is less than the total heating rate after including the contribution from the compressional heating (pdV). The increasing cooling rate during the rapid increase of the molecular fraction is offset by the unavoidable heating due to gas contraction. We conclude that fragmentation occurs because H-2 cooling, the heating due to H-2 formation and compressional heating together set a density and temperature structure in the disk that favors fragmentation, not the chemothermal instability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to investigate the possibility to construct tissue-engineered bone repair scaffolds with pore size distributions using rapid prototyping techniques. Design/methodology/approach - The fabrication of porous scaffolds with complex porous architectures represents a major challenge in tissue engineering and the design aspects to mimic complex pore shape as well as spatial distribution of pore sizes of natural hard tissue remain unexplored. In this context, this work aims to evaluate the three-dimensional printing process to study its potential for scaffold fabrication as well as some innovative design of homogeneously porous or gradient porous scaffolds is described and such design has wider implication in the field of bone tissue engineering. Findings - The present work discusses biomedically relevant various design strategies with spatial/radial gradient in pore sizes as well as with different pore sizes and with different pore geometries. Originality/value - One of the important implications of the proposed novel design scheme would be the development of porous bioactive/biodegradable composites with gradient pore size, porosity, composition and with spatially distributed biochemical stimuli so that stem cells loaded into scaffolds would develop into complex tissues such as those at the bone-cartilage interface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cu2SnS3 thins films were deposited onto In2O3: Sn coated soda lime glass substrates by spin coating technique. The films have been structurally characterized using x-ray Diffraction (XRD) and Atomic Force Microscopy (AFM). The morphology of the films was studied using Field Emission Scanning Electron Microscopy (FESEM). The optical properties of the films were determined using UV-vis-NIR spectrophotometer. The electrical properties were measured using Hall effect measurements. The energy band offsets at the Cu2SnS3/In2O3: Sn interface were calculated using x-ray photoelectron spectroscopy (XPS). The valence band offset was found to be -3.4 +/- 0.24 eV. From the valence band offset value, the conduction band offset is calculated to be -1.95 +/- 0.34 eV. The energy band alignment indicates a type-II misaligned heterostructure formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strontium ions (Sr2+) are known to prevent osteoporosis and also encourage bone formation. Such twin requirements have motivated researchers to develop Sr-substituted biomaterials for orthopaedic applications. The present study demonstrates a new concept of developing Sr-substituted Mg-3(PO4)(2) - based biodegradable scaffolds. In particular, this work reports the fabrication, mechanical properties with an emphasis on strength reliability as well as in vitro degradation of highly biodegradable strontium-incorporated magnesium phosphate cements. These implantable scaffolds were fabricated using three-dimensional powder printing, followed by high temperature sintering and/or chemical conversion, a technique adaptable to develop patient-specific implants. A moderate combination of strength properties of 36.7 MPa (compression), 242 MPa (bending) and 10.7 MPa (tension) were measured. A reasonably modest Weibull modulus of up to 8.8 was recorded after uniaxial compression or diametral tensile tests on 3D printed scaffolds. A comparison among scaffolds with varying compositions or among sintered or chemically hardened scaffolds reveals that the strength reliability is not compromised in Sr-substituted scaffolds compared to baseline Mg-3(PO4)(2). The micro-computed tomography analysis reveals the presence of highly interconnected porous architecture in three-dimension with lognormal pore size distribution having median in the range of 17.74-26.29 mu m for the investigated scaffolds. The results of extensive in vitro ion release study revealed passive degradation with a reduced Mg2+ release and slow but sustained release of Sr2+ from strontium-substituted magnesium phosphate scaffolds. Taken together, the present study unequivocally illustrates that the newly designed Sr-substituted magnesium phosphate scaffolds with good strength reliability could be used for biomedical applications requiring consistent Sr2+-release, while the scaffold degrades in physiological medium. Statement of significance The study investigates the additive manufacturing of scaffolds based on different strontium-substituted magnesium phosphate bone cements by means of three-dimensional powder printing technique (3DPP). Magnesium phosphates were chosen due to their higher biodegradability compared to calcium phosphates, which is due to both a higher solubility as well as the absence of phase changes (to low soluble hydroxyapatite) in vivo. Since strontium ions are known to promote bone formation by stimulating osteoblast growth, we aimed to establish such a highly degradable magnesium phosphate ceramic with an enhanced bioactivity for new bone ingrowth. After post-processing, mechanical strengths of up to 36.7 MPa (compression), 24.2 MPa (bending) and 10.7 MPa (tension) could be achieved. Simultaneously, the failure reliability of those bioceramic implant materials, measured by Weibull modulus calculations, were in the range of 4.3-8.8. Passive dissolution studies in vitro proved an ion release of Mg2+ and PO43- as well as Sr2+, which is fundamental for in vivo degradation and a bone growth promoting effect. In our opinion, this work broadens the range of bioceramic bone replacement materials suitable for additive manufacturing processing. The high biodegradability of MPC ceramics together with the anticipated promoting effect on osseointegration opens up the way for a patient-specific treatment with the prospect of a fast and complete healing of bone fractures. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cu2SnS3 thins films were deposited onto In2O3: Sn coated soda lime glass substrates by spin coating technique. The films have been structurally characterized using x-ray Diffraction (XRD) and Atomic Force Microscopy (AFM). The morphology of the films was studied using Field Emission Scanning Electron Microscopy (FESEM). The optical properties of the films were determined using UV-vis-NIR spectrophotometer. The electrical properties were measured using Hall effect measurements. The energy band offsets at the Cu2SnS3/In2O3: Sn interface were calculated using x-ray photoelectron spectroscopy (XPS). The valence band offset was found to be -3.4 +/- 0.24 eV. From the valence band offset value, the conduction band offset is calculated to be -1.95 +/- 0.34 eV. The energy band alignment indicates a type-II misaligned heterostructure formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two-dimensional magnetic recording 2-D (TDMR) is a promising technology for next generation magnetic storage systems based on a systems-level framework involving sophisticated signal processing at the core. The TDMR channel suffers from severe jitter noise along with electronic noise that needs to be mitigated during signal detection and recovery. Recently, we developed noise prediction-based techniques coupled with advanced signal detectors to work with these systems. However, it is important to understand the role of harmful patterns that can be avoided during the encoding process. In this paper, we investigate the Voronoi-based media model to study the harmful patterns over multitrack shingled recording systems. Through realistic quasi-micromagnetic simulation studies, we identify 2-D data patterns that contribute to high media noise. We look into the generic Voronoi model and present our analysis on multitrack detection with constrained coded data. We show that the 2-D constraints imposed on input patterns result in an order of magnitude improvement in the bit-error rate for the TDMR systems. The use of constrained codes can reduce the complexity of 2-D intersymbol interference (ISI) signal detection, since the lesser 2-D ISI span can be accommodated at the cost of a nominal code rate loss. However, a system must be designed carefully so that the rate loss incurred by a 2-D constraint does not offset the detector performance gain due to more distinguishable readback signals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wildlife conservation in human-dominated landscapes requires that we understand how animals, when making habitat-use decisions, obtain diverse and dynamically occurring resources while avoiding risks, induced by both natural predators and anthropogenic threats. Little is known about the underlying processes that enable wild animals to persist in densely populated human-dominated landscapes, particularly in developing countries. In a complex, semi-arid, fragmented, human-dominated agricultural landscape, we analyzed the habitat-use of blackbuck, a large herbivore endemic to the Indian sub-continent. We hypothesized that blackbuck would show flexible habitat-use behaviour and be risk averse when resource quality in the landscape is high, and less sensitive to risk otherwise. Overall, blackbuck appeared to be strongly influenced by human activity and they offset risks by using small protected patches (similar to 3 km(2)) when they could afford to do so. Blackbuck habitat use varied dynamically corresponding with seasonally-changing levels of resources and risks, with protected habitats registering maximum use. The findings show that human activities can strongly influence and perhaps limit ungulate habitat-use and behaviour, but spatial heterogeneity in risk, particularly the presence of refuges, can allow ungulates to persist in landscapes with high human and livestock densities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solar geoengineering has been proposed as a potential means to counteract anthropogenic climate change, yet it is unknown how such climate intervention might affect the Earth's climate on the millennial time scale. Here we use the HadCM3L model to conduct a 1000year sunshade geoengineering simulation in which solar irradiance is uniformly reduced by 4% to approximately offset global mean warming from an abrupt quadrupling of atmospheric CO2. During the 1000year period, modeled global climate, including temperature, hydrological cycle, and ocean circulation of the high-CO2 simulation departs substantially from that of the control preindustrial simulation, whereas the climate of the geoengineering simulation remains much closer to that of the preindustrial state with little drift. The results of our study do not support the hypothesis that nonlinearities in the climate system would cause substantial drift in the climate system if solar geoengineering was to be deployed on the timescale of a millennium.