130 resultados para Nonperturbative field theory
Resumo:
Any (N+M)-parameter Lie group G with an N-parameter subgroup H can be realized as a global group of diffeomorphisms on an M-dimensional base space B, with representations in terms of transformation laws of fields on B belonging to linear representations of H. The gauged generalization of the global diffeomorphisms consists of general diffeomorphisms (or coordinate transformations) on a base space together with a local action of H on the fields. The particular applications of the scheme to space-time symmetries is discussed in terms of Lagrangians, field equations, currents, and source identities. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.
Resumo:
After briefly discussing the question of a distinct mixed valent state and theoretical models for it, the area of greatest theoretical success, namely the mixed valent impurity, is reviewed. Applications to spectroscopy, energetics and Hall effect are then putlined. The independent impurity approximation is inadequate for many properties of the bulk system, which depend on lattice coherence. A recent auxiliary or slave boson approach with a simple mean field limit and fluctuation corrections is summarized. Finally the mixed valent semiconductor is discussed as an outstanding problem.
Resumo:
We have used phase field simulations to study the effect of misfit and interfacial curvature on diffusion-controlled growth of an isolated precipitate in a supersaturated matrix. Treating our simulations as computer experiments, we compare our simulation results with those based on the Zener–Frank and Laraia–Johnson–Voorhees theories for the growth of non-misfitting and misfitting precipitates, respectively. The agreement between simulations and the Zener–Frank theory is very good in one-dimensional systems. In two-dimensional systems with interfacial curvature (with and without misfit), we find good agreement between theory and simulations, but only at large supersaturations, where we find that the Gibbs–Thomson effect is less completely realized. At small supersaturations, the convergence of instantaneous growth coefficient in simulations towards its theoretical value could not be tracked to completion, because the diffusional field reached the system boundary. Also at small supersaturations, the elevation in precipitate composition matches well with the theoretically predicted Gibbs–Thomson effect in both misfitting and non-misfitting systems.
Resumo:
In this paper the kinematics of a weak shock front governed by a hyperbolic system of conservation laws is studied. This is used to develop a method for solving problems, involving the propagation of nonlinear unimodal waves. It consists of first solving the nonlinear wave problem by moving along the bicharacteristics of the system and then fitting the shock into this solution field, so that it satisfies the necessary jump conditions. The kinematics of the shock leads in a natural way to the definition of ldquoshock-raysrdquo, which play the same role as the ldquoraysrdquo in a continuous flow. A special case of a circular cylinder introduced suddenly in a constant streaming flow is studied in detail. The shock fitted in the upstream region propagates with a velocity which is the mean of the velocities of the linear and the nonlinear wave fronts. In the downstream the solution is given by an expansion wave.
Resumo:
We investigate the Einstein relation for the diffusivity-mobility ratio (DMR) for n-i-p-i and the microstructures of nonlinear optical compounds on the basis of a newly formulated electron dispersion law. The corresponding results for III-V, ternary and quaternary materials form a special case of our generalized analysis. The respective DMRs for II-VI, IV-VI and stressed materials have been studied. It has been found that taking CdGeAs2, Cd3As2, InAs, InSb, Hg1−xCdxTe, In1−xGaxAsyP1−y lattices matched to InP, CdS, PbTe, PbSnTe and Pb1−xSnxSe and stressed InSb as examples that the DMR increases with increasing electron concentration in various manners with different numerical magnitudes which reflect the different signatures of the n-i-p-i systems and the corresponding microstructures. We have suggested an experimental method of determining the DMR in this case and the present simplified analysis is in agreement with the suggested relationship. In addition, our results find three applications in the field of quantum effect devices.
Resumo:
The theory of polarographic maxima is presented taking into account the interaction of momentum transport, the electrostatic potential field, the adsorption—desorption and the faradaic processes. Several earlier results are generalised. The systems approach employed here is also extended to quasi-linear situations.
Resumo:
Starting from a microscopic theory, we derive a master equation for a harmonic oscillator coupled to a bath of noninteracting oscillators. We follow a nonperturbative approach, proposed earlier by us for the free Brownian particle. The diffusion constants are calculated analytically and the positivity of the master equation is shown to hold above a critical temperature. We compare the long time behavior of the average kinetic and potential energies with known thermodynamic results. In the limit of vanishing oscillator frequency of the system, we recover the results of the free Brownian particle.
Resumo:
A modal analysis and near-field study for a dielectric-coated conducting sphere excited by a delta function electric field source has been made. The structure can support an infinite number of modes theoretically. For equatorial excitation only odd order modes are excited, whereas for non-equatorial excitation both even and odd order modes are excited. The variation of the amplitude coefficients both internal and external exhibit a different nature of variation with respect to the various structure parameters for different modes. The field distributions both in the r and theta directions for non-equatorial excitation show good agreement between theory and experiment for the strongest mode.
Resumo:
The steady MHD mixed convection flow of a viscoelastic fluid in the vicinity of two-dimensional stagnation point with magnetic field has been investigated under the assumption that the fluid obeys the upper-convected Maxwell (UCM) model. Boundary layer theory is used to simplify the equations of motion. induced magnetic field and energy which results in three coupled non-linear ordinary differential equations which are well-posed. These equations have been solved by using finite difference method. The results indicate the reduction in the surface velocity gradient, surface heat transfer and displacement thickness with the increase in the elasticity number. These trends are opposite to those reported in the literature for a second-grade fluid. The surface velocity gradient and heat transfer are enhanced by the magnetic and buoyancy parameters. The surface heat transfer increases with the Prandtl number, but the surface velocity gradient decreases.
Resumo:
We report the binding energy of various nucleobases (guanine (G), adenine (A), thymine (T) and cytosine (C)) with (5,5) single-walled carbon nanotube (SWNT) calculated using first-principle Hartre–Fock method (HF) together with classical force field. The binding energy without including the solvation effects of water decreases in the order G>A>T>C. The inclusion of solvation energy changes the order of binding preference to be G>T>A>C. Using isothermal titration (micro) calorimetry experiments, we also show the relative binding affinity to be T>A>C, in agreement with our calculations.
Resumo:
The cyclically varying magnetic field of the Sun is believed to be produced by the hydromagnetic dynamo process. We first summarize the relevant observational data pertaining to sunspots and solar cycle. Then we review the basic principles of MHD needed to develop the dynamo theory. This is followed by a discussion how bipolar sunspots form due to magnetic buoyancy of flux tubes formed at the base of the solar convection zone. Following this, we come to the heart of dynamo theory. After summarizing the basic ideas of a turbulent dynamo and the basic principles of its mean field formulation, we present the famous dynamo wave solution, which was supposed to provide a model for the solar cycle. Finally we point out how a flux transport dynamo can circumvent some of the difficulties associated with the older dynamo models.
Resumo:
Polarized scattering in spectral lines is governed by a 4; 4 matrix that describes how the Stokes vector is scattered and redistributed in frequency and direction. Here we develop the theory for this redistribution matrix in the presence of magnetic fields of arbitrary strength and direction. This general magnetic field case is called the Hanle- Zeeman regime, since it covers both of the partially overlapping weak- and strong- field regimes in which the Hanle and Zeeman effects dominate the scattering polarization. In this general regime, the angle-frequency correlations that describe the so-called partial frequency redistribution (PRD) are intimately coupled to the polarization properties. We develop the theory for the PRD redistribution matrix in this general case and explore its detailed mathematical properties and symmetries for the case of a J = 0 -> 1 -> 0 scattering transition, which can be treated in terms of time-dependent classical oscillator theory. It is shown how the redistribution matrix can be expressed as a linear superposition of coherent and noncoherent parts, each of which contain the magnetic redistribution functions that resemble the well- known Hummer- type functions. We also show how the classical theory can be extended to treat atomic and molecular scattering transitions for any combinations of quantum numbers.
Resumo:
We investigate the photoemission from quantum wells (QWs) in ultrathin films (UFs) and quantum well wires (QWWs) of non-linear optical materials on the basis of a newly formulated electron dispersion law considering the anisotropies of the effective electron masses, the spin-orbit splitting constants and the presence of the crystal field splitting within the framework of k.p formalism. The results of quantum confined Ill-V compounds form the special cases of our generalized analysis. The photoemission has also been studied for quantum confined II-VI, n-GaP, n-Ge, PtSb2, stressed materials and Bismuth on the basis of respective dispersion relations. It has been found taking quantum confined CdGeAS(2), InAs, InSb, CdS, GaP, Ge, PtSb2, stressed n-InSb and B1 that the photoemission exhibits quantized variations with the incident photon energy, changing electron concentration and film thickness, respectively, for all types of quantum confinement. The photoemission from CNs exhibits oscillatory dependence with increasing normalized electron degeneracy and the signature of the entirely different types of quantum systems are evident from the plots. Besides, under certain special conditions, all the results for all the materials gets simplified to the well-known expression of photoemission from non-degenerate semiconductors and parabolic energy bands, leading to the compatibility test.
Resumo:
A microscopic theory of equilibrium solvation and solvation dynamics of a classical, polar, solute molecule in dipolar solvent is presented. Density functional theory is used to explicitly calculate the polarization structure around a solvated ion. The calculated solvent polarization structure is different from the continuum model prediction in several respects. The value of the polarization at the surface of the ion is less than the continuum value. The solvent polarization also exhibits small oscillations in space near the ion. We show that, under certain approximations, our linear equilibrium theory reduces to the nonlocal electrostatic theory, with the dielectric function (c(k)) of the liquid now wave vector (k) dependent. It is further shown that the nonlocal electrostatic estimate of solvation energy, with a microscopic c(k), is close to the estimate of linearized equilibrium theories of polar liquids. The study of solvation dynamics is based on a generalized Smoluchowski equation with a mean-field force term to take into account the effects of intermolecular interactions. This study incorporates the local distortion of the solvent structure near the ion and also the effects of the translational modes of the solvent molecules.The latter contribution, if significant, can considerably accelerate the relaxation of solvent polarization and can even give rise to a long time decay that agrees with the continuum model prediction. The significance of these results is discussed.
Resumo:
A molecular theory of collective orientational relaxation of dipolar molecules in a dense liquid is presented. Our work is based on a generalized, nonlinear, Smoluchowski equation (GSE) that includes the effects of intermolecular interactions through a mean‐field force term. The effects of translational motion of the liquid molecules on the orientational relaxation is also included self‐consistently in the GSE. Analytic expressions for the wave‐vector‐dependent orientational correlation functions are obtained for one component, pure liquid and also for binary mixtures. We find that for a dipolar liquid of spherical molecules, the correlation function ϕ(k,t) for l=1, where l is the rank of the spherical harmonics, is biexponential. At zero wave‐vector, one time constant becomes identical with the dielectric relaxation time of the polar liquid. The second time constant is the longitudinal relaxation time, but the contribution of this second component is small. We find that polar forces do not affect the higher order correlation functions (l>1) of spherical dipolar molecules in a linearized theory. The expression of ϕ(k,t) for a binary liquid is a sum of four exponential terms. We also find that the wave‐vector‐dependent relaxation times depend strongly on the microscopic structure of the dense liquid. At intermediate wave vectors, the translational diffusion greatly accelerates the rate of orientational relaxation. The present study indicates that one must pay proper attention to the microscopic structure of the liquid while treating the translational effects. An analysis of the nonlinear terms of the GSE is also presented. An interesting coupling between the number density fluctuation and the orientational fluctuation is uncovered.