97 resultados para Nonlinear optical waveguides
Resumo:
Nonlinear absorption and refraction phenomena in stoichiometric lithium niobate (SLN) pure and co-doped with Zn and Nd, and congruent lithium niobate (CLN) were investigated using Z-scan technique. Femtosecond laser pulses from Ti:Sapphire laser (800 nm, 110 fs pulse width and 1 kHz repetition rate) were utilized for the experiment. The process responsible for nonlinear behavior of the samples was identified to be three photon absorption (3PA). This is in agreement with the band gap energies of the samples obtained from the linear absorption cut off and the slope of the plot of Ln(1 − TOA) vs. Ln(I0) using Sutherland’s theory (s = 2.1, for 3PA). The nonlinear refractive index (n2) of Zn doped samples was found to be lower than that of pure samples. Our experiments show that there exists a correlation between the nonlinear properties and the stoichiometry of the samples. The values of n2 fall into the same range as those obtained for the materials of similar band gap.
Resumo:
Pristine and molybdenum filled double walled carbon nanotubes (DWNTs) suspended in D2O show excellent ultrafast optical switching properties investigated through femtosecond Z-scan and degenerate pump-probe method using 50 fs pulses with central photon energy of 1.57 eV. For pristine-DWNT, the two photon absorption coefficient, beta and nonlinear refraction coefficient, n2 are 4.9×10−8 cm/W, and 9.5×10−11 cm2/W, respectively, which yield one photon figure of merit, W=133 and two photon figure of merit, T=0.4. The degenerate pump-probe measurements show strong photoinduced bleaching with biexponential decay with time constants ~150 and 600 fs. ©2009 American Institute of Physics
Resumo:
We present experimental validation of a new reconstruction method for off-axis digital holographic microscopy (DHM). This method effectively suppresses the object autocorrelation,namely, the zero-order term,from holographic data,thereby improving the reconstruction bandwidth of complex wavefronts. The algorithm is based on nonlinear filtering and can be applied to standard DHM setups with realistic recording conditions.We study the robustness of the technique under different experimental configurations,and quantitatively demonstrate its enhancement capabilities on phase signals.
Resumo:
Purpose: A computationally efficient algorithm (linear iterative type) based on singular value decomposition (SVD) of the Jacobian has been developed that can be used in rapid dynamic near-infrared (NIR) diffuse optical tomography. Methods: Numerical and experimental studies have been conducted to prove the computational efficacy of this SVD-based algorithm over conventional optical image reconstruction algorithms. Results: These studies indicate that the performance of linear iterative algorithms in terms of contrast recovery (quantitation of optical images) is better compared to nonlinear iterative (conventional) algorithms, provided the initial guess is close to the actual solution. The nonlinear algorithms can provide better quality images compared to the linear iterative type algorithms. Moreover, the analytical and numerical equivalence of the SVD-based algorithm to linear iterative algorithms was also established as a part of this work. It is also demonstrated that the SVD-based image reconstruction typically requires O(NN2) operations per iteration, as contrasted with linear and nonlinear iterative methods that, respectively, requir O(NN3) and O(NN6) operations, with ``NN'' being the number of unknown parameters in the optical image reconstruction procedure. Conclusions: This SVD-based computationally efficient algorithm can make the integration of image reconstruction procedure with the data acquisition feasible, in turn making the rapid dynamic NIR tomography viable in the clinic to continuously monitor hemodynamic changes in the tissue pathophysiology.
Resumo:
We study resonant nonlinear magneto-optic rotation (NMOR) in a paraffin-coated Rb vapor cell as the magnetic field is swept. At low sweep rates, the nonlinear rotation appears as a narrow resonance signal with a linewidth of about ``300 mu G''(2 pi x 420 Hz). At high sweep rates, the signal shows transient response with an oscillatory decay. The decay time constant is of order 100 ms. The behavior is different for transitions starting from the lower or the upper hyperfine level of the ground state because of optical pumping effects.
Resumo:
Lead sulfide (PbS) microtowers on silicon substrates, having the physical properties of bulk PbS, have been synthesized. Optical nonlinearity studies using the open aperture z-scan technique employing 5 ns and 100 fs laser pulses reveal effective two-photon type absorption. For nanosecond excitation the nonlinear absorption coefficients (beta(eff)) are in the order of 10(-11) m W-1, two orders of magnitude less than the values reported for quantum confined PbS nanocrystals. For femtosecond excitation beta(eff) is of the order of 10(-14) m W-1. These results obtained in bulk PbS experimentally confirm the importance of quantum confinement in the enhancement of optical nonlinearities in semiconductor materials.
Resumo:
A spectral method that obtains the soliton and periodic solutions to the nonlinear wave equation is presented. The results show that the nonlinear group velocity is a function of the frequency shift as well as of the soliton power. When the frequency shift is a function of time, a solution in terms of the Jacobian elliptic function is obtained. This solution is periodic in nature, and, to generate such an optical pulse train, one must simultaneously amplitude- and frequency-modulate the optical carrier. Finally, we extend the method to include the effect of self-steepening.
Resumo:
The efficiency of acoustooptic (AO) interaction in YZ-cut proton exchanged (PE) LiNbO3 waveguides is theoretically analysed by determining the overlap between the optical and acoustic field distributions. The present analysis takes into account the perturbed SAW field distribution due to the presence of the PE layer on the LiNbO3 substrate determined by the rigorous layered medium approach. The overlap is found to be significant upto very high acoustic frequencies of the order of 5 GHz, whereas in the earlier analysis by vonHelmolt and Schaffer [6] for diffused waveguides, it was shown that the overlap integral rolls down to nearly zero at this high frequency range.
Resumo:
Purpose: Fast reconstruction of interior optical parameter distribution using a new approach called Broyden-based model iterative image reconstruction (BMOBIIR) and adjoint Broyden-based MOBIIR (ABMOBIIR) of a tissue and a tissue mimicking phantom from boundary measurement data in diffuse optical tomography (DOT). Methods: DOT is a nonlinear and ill-posed inverse problem. Newton-based MOBIIR algorithm, which is generally used, requires repeated evaluation of the Jacobian which consumes bulk of the computation time for reconstruction. In this study, we propose a Broyden approach-based accelerated scheme for Jacobian computation and it is combined with conjugate gradient scheme (CGS) for fast reconstruction. The method makes explicit use of secant and adjoint information that can be obtained from forward solution of the diffusion equation. This approach reduces the computational time many fold by approximating the system Jacobian successively through low-rank updates. Results: Simulation studies have been carried out with single as well as multiple inhomogeneities. Algorithms are validated using an experimental study carried out on a pork tissue with fat acting as an inhomogeneity. The results obtained through the proposed BMOBIIR and ABMOBIIR approaches are compared with those of Newton-based MOBIIR algorithm. The mean squared error and execution time are used as metrics for comparing the results of reconstruction. Conclusions: We have shown through experimental and simulation studies that Broyden-based MOBIIR and adjoint Broyden-based methods are capable of reconstructing single as well as multiple inhomogeneities in tissue and a tissue-mimicking phantom. Broyden MOBIIR and adjoint Broyden MOBIIR methods are computationally simple and they result in much faster implementations because they avoid direct evaluation of Jacobian. The image reconstructions have been carried out with different initial values using Newton, Broyden, and adjoint Broyden approaches. These algorithms work well when the initial guess is close to the true solution. However, when initial guess is far away from true solution, Newton-based MOBIIR gives better reconstructed images. The proposed methods are found to be stable with noisy measurement data. (C) 2011 American Association of Physicists in Medicine. DOI: 10.1118/1.3531572]
Resumo:
We present experimental investigation of a new reconstruction method for off-axis digital holographic microscopy (DHM). This method effectively suppresses the object auto-correlation, commonly called the zero-order term, from holographic measurements, thereby suppressing the artifacts generated by the intensities of the two beams employed for interference from complex wavefield reconstruction. The algorithm is based on non-linear filtering, and can be applied to standard DHM setups, with realistic recording conditions. We study the applicability of the technique under different experimental configurations, such as topographic images of microscopic specimens or speckle holograms.
Resumo:
TiO2 thin films were prepared by sol gel method. The structural investigations performed by means of X- ray diffraction (XRD) technique, Scanning electronic microscopy (SEM) showed the shape structure at T=600°C. The optical constants of the deposited film were obtained from the analysis of the experimental recorded transmittance spectral data over the wavelengths range 200-3000 nm. The values of some important parameters (refractive index n, dielectric constant ε ∞ and thickness d), and the third order optical nonlinear susceptibility χ(3) of TiO2 film are determined from these spectra. It has been found that the dispersion data obey the single oscillator relation of the Wemple-DiDomenico model, from which the dispersion parameters and high – frequency dielectric constant were determined. The estimation of the corresponding band gap Eg , χ (3) and ε ∞ are 2.57 eV, 0.021 × 10-10 esu and 5.20,respectively.
Resumo:
We address a certain inverse problem in ultrasound-modulated optical tomography: the recovery of the amplitude of vibration of scatterers [p(r)] in the ultrasound focal volume in a diffusive object from boundary measurement of the modulation depth (M) of the amplitude autocorrelation of light [phi(r, tau)] traversing through it. Since M is dependent on the stiffness of the material, this is the precursor to elasticity imaging. The propagation of phi(r, tau) is described by a diffusion equation from which we have derived a nonlinear perturbation equation connecting p(r) and refractive index modulation [Delta n(r)] in the region of interest to M measured on the boundary. The nonlinear perturbation equation and its approximate linear counterpart are solved for the recovery of p(r). The numerical results reveal regions of different stiffness, proving that the present method recovers p(r) with reasonable quantitative accuracy and spatial resolution. (C) 2011 Optical Society of America
Resumo:
Diffuse optical tomography (DOT) is one of the ways to probe highly scattering media such as tissue using low-energy near infra-red light (NIR) to reconstruct a map of the optical property distribution. The interaction of the photons in biological tissue is a non-linear process and the phton transport through the tissue is modelled using diffusion theory. The inversion problem is often solved through iterative methods based on nonlinear optimization for the minimization of a data-model misfit function. The solution of the non-linear problem can be improved by modeling and optimizing the cost functional. The cost functional is f(x) = x(T)Ax - b(T)x + c and after minimization, the cost functional reduces to Ax = b. The spatial distribution of optical parameter can be obtained by solving the above equation iteratively for x. As the problem is non-linear, ill-posed and ill-conditioned, there will be an error or correction term for x at each iteration. A linearization strategy is proposed for the solution of the nonlinear ill-posed inverse problem by linear combination of system matrix and error in solution. By propagating the error (e) information (obtained from previous iteration) to the minimization function f(x), we can rewrite the minimization function as f(x; e) = (x + e)(T) A(x + e) - b(T)(x + e) + c. The revised cost functional is f(x; e) = f(x) + e(T)Ae. The self guided spatial weighted prior (e(T)Ae) error (e, error in estimating x) information along the principal nodes facilitates a well resolved dominant solution over the region of interest. The local minimization reduces the spreading of inclusion and removes the side lobes, thereby improving the contrast, localization and resolution of reconstructed image which has not been possible with conventional linear and regularization algorithm.
Resumo:
High density transparent glasses (7.86 g/cc) were fabricated in the 2Bi(2)O(3)-B2O3 (BBO) system. Optical band gap of the obtained glasses was found to be 2.6eV. The refractive index measured for these glasses was 2.25 +/- 0.05 at lambda=543 nm. Nonlinear refraction and absorption studies were carried out on the BBO glasses using z-scan technique a lambda=532 nm of 10 ns pulse width. The nonlinear refractive index obtained was n(2)=12.1x10(-14) cm(2)/W and nonlinear absorption coefficient was beta=15.2 cm/GW. The n(2) and beta values of the BBO glasses were large compared to the other reported high index bismuth based oxide glass systems in the literature. These were attributed to the high density, high linear refractive index, low band gap and two photon absorption associated with these glasses. The electronic origin of large nonlinearities was discussed based on bond-orbital theory.
Resumo:
The inverse problem in the diffuse optical tomography is known to be nonlinear, ill-posed, and sometimes under-determined, requiring regularization to obtain meaningful results, with Tikhonov-type regularization being the most popular one. The choice of this regularization parameter dictates the reconstructed optical image quality and is typically chosen empirically or based on prior experience. An automated method for optimal selection of regularization parameter that is based on regularized minimal residual method (MRM) is proposed and is compared with the traditional generalized cross-validation method. The results obtained using numerical and gelatin phantom data indicate that the MRM-based method is capable of providing the optimal regularization parameter. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). DOI: 10.1117/1.JBO.17.10.106015]