287 resultados para NONLINEAR ELASTICITY
Resumo:
In this paper we introduce a nonlinear detector based on the phenomenon of suprathreshold stochastic resonance (SSR). We first present a model (an array of 1-bit quantizers) that demonstrates the SSR phenomenon. We then use this as a pre-processor to the conventional matched filter. We employ the Neyman-Pearson(NP) detection strategy and compare the performances of the matched filter, the SSR-based detector and the optimal detector. Although the proposed detector is non-optimal, for non-Gaussian noises with heavy tails (leptokurtic) it shows better performance than the matched filter. In situations where the noise is known to be leptokurtic without the availability of the exact knowledge of its distribution, the proposed detector turns out to be a better choice than the matched filter.
Resumo:
A nonlinear adaptive system theoretic approach is presented in this paper for effective treatment of infectious diseases that affect various organs of the human body. The generic model used does not represent any specific disease. However, it mimics the generic immunological dynamics of the human body under pathological attack, including the response to external drugs. From a system theoretic point of view, drugs can be interpreted as control inputs. Assuming a set of nominal parameters in the mathematical model, first a nonlinear controller is designed based on the principle of dynamic inversion. This treatment strategy was found to be effective in completely curing "nominal patients". However, in some cases it is ineffective in curing "realistic patients". This leads to serious (sometimes fatal) damage to the affected organ. To make the drug dosage design more effective, a model-following neuro-adaptive control design is carried out using neural networks, which are trained (adapted) online. From simulation studies, this adaptive controller is found to be effective in killing the invading microbes and healing the damaged organ even in the presence of parameter uncertainties and continuing pathogen attack.
Resumo:
The paper proposes a time scale separated partial integrated guidance and control of an interceptor for engaging high speed targets in the terminal phase. In this two loop design, the outer loop is an optimal control formulation based on nonlinear model predictive spread control philosophies. It gives the commanded pitch and yaw rates whereas necessary roll-rate command is generated from a roll-stabilization loop. The inner loop tracks the outer loop commands using the dynamicinversion philosophy. However, unlike conventional designs, in both the loops the Six degree of freedom (Six-DOF) interceptor model is used directly. This intelligent manipulation preserves the inherent time scale separation property between the translational and rotational dynamics, and hence overcomes the deficiency of current IGC designs, while preserving its benefits. Six-DOF simulation studies have been carried out accounting for three dimensional engagement geometry. Different comparison studies were also conducted to measure the performance of the algorithm.
Resumo:
A modern system theory based nonlinear control design is discussed in this paper for successful operation of an air-breathing engine operating at supersonic speed. The primary objective of the control design of such an air-breathing engine is to ensure that the engine dynamically produces the thrust that tracks a commanded value of thrust as closely as possible by regulating the fuel flow to the combustion system. However, since the engine operates in the supersonic range, an important secondary objective is to manage the shock wave configuration in the intake section of the engine which is manipulated by varying the throat area of the nozzle. A nonlinear sliding mode control technique has been successfully used to achieve both of the above objectives. In this problem, since the process is faster than the actuators, independent control designs are also carried out for the actuators as well to assure the satisfactory performance of the system. Moreover, to filter out the sensor and process noises and to estimate the states for making the control design operate based on output feedback, an Extended Kalman Filter based state estimation design is also carried out. The promising simulation results suggest that the proposed control design approach is quite successful in obtaining robust performance of the air-breathing engine.
Resumo:
The problem of homogeneous solid propellant combustion instability is studied with a one-dimensional flame model, including the effects of gas-phase thermal inertia and nonlinearity. Computational results presented in this paper show nonlinear instabilities inherent in the equations, due to which periodic burning is found even under steady ambient conditions such as pressure. The stability boundary is obtained in terms of Denison-Baum parameters. It is found that inclusion of gas-phase thermal inertia stabilizes the combustion. Also, the effect of a distributed heat release in the gas phase, compared to the flame sheet model, is to destabilize the burning. Direct calculations for finite amplitude pressure disturbances show that two distinct resonant modes exist, the first one near the natural frequency as obtained from intrinsic instability analysis and a second mode occurring at a much higher driving frequency. It is found that er rn in the low frequency region, the response of the propellant is significantly affected by the specific type of gas-phase chemical heat-release model employed. Examination of frequency response function reveals that the role of gas-phase thermal inertia is to stabilize the burning near the first resonant mode. Calculations made for different amplitudes of driving pressure show that the mean burning rate decreases with increasing amplitude. Also, with an increase in the driving amplitude, higher harmonics are generated in the burning rate.
Resumo:
The present work gives a comprehensive numerical study of the evolution and decay of cylindrical and spherical nonlinear acoustic waves generated by a sinusoidal source. Using pseudospectral and predictor–corrector implicit finite difference methods, we first reproduced the known analytic results of the plane harmonic problem to a high degree of accuracy. The non-planar harmonic problems, for which the amplitude decay is faster than that for the planar case, are then treated. The results are correlated with the known asymptotic results of Scott (1981) and Enflo (1985). The constant in the old-age formula for the cylindrical canonical problem is found to be 1.85 which is rather close to 2, ‘estimated’ analytically by Enflo. The old-age solutions exhibiting strict symmetry about the maximum are recovered; these provide an excellent analytic check on the numerical solutions. The evolution of the waves for different source geometries is depicted graphically.
Resumo:
A stronger concept of complete (exact) controllability which we call Trajectory Controllability is introduced in this paper. We study the Trajectory Controllability of an abstract nonlinear integro-differential system in the finite and infinite dimensional space setting. (C) 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
The static response of thin, wrinkled membranes is studied using both a tension field approximation based on plane stress conditions and a 3D nonlinear elasticityformulation, discretized through 8-noded Cosserat point elements. While the tension field approach only obtains the wrinkled/slack regions and at best a measure of the extent of wrinkliness, the 3D elasticity solution provides, in principle, the deformed shape of a wrinkled/slack membrane. However, since membranes barely resist compression, the discretized and linearized system equations via both the approaches are ill-conditioned and solutions could thus be sensitive to discretizations errors as well as other sources of noises/imperfections. We propose a regularized, pseudo-dynamical recursion scheme that provides a sequence of updates, which are almost insensitive to theregularizing term as well as the time step size used for integrating the pseudo-dynamical form. This is borne out through several numerical examples wherein the relative performance of the proposed recursion scheme vis-a-vis a regularized Newton strategy is compared. The pseudo-time marching strategy, when implemented using 3D Cosserat point elements, also provides a computationally cheaper, numerically accurate and simpler alternative to that using geometrically exact shell theories for computing large deformations of membranes in the presence of wrinkles. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this study, we investigated measures of nonlinear dynamics and chaos theory in regards to heart rate variability in 27 normal control subjects in supine and standing postures, and 14 subjects in spontaneous and controlled breathing conditions. We examined minimum embedding dimension (MED), largest Lyapunov exponent (LLE) and measures of nonlinearity (NL) of heart rate time series. MED quantifies the system's complexity, LLE predictability and NL, a measure of deviation from linear processes. There was a significant decrease in complexity (P<0.00001), a decrease in predictability (P<0.00001) and an increase in nonlinearity (P=0.00001) during the change from supine to standing posture. Decrease in MED, and increases in NL score and LLE in standing posture appear to be partly due to an increase in sympathetic activity of the autonomous nervous system in standing posture. An improvement in predictability during controlled breathing appears to be due to the introduction of a periodic component. (C) 2000 published by Elsevier Science B.V.
Resumo:
The study of non-invasive characterization of elastic properties of soft biological tissues has been a focus of active researches since recent years. Light is highly scattered by biological tissues and hence, sophisticated reconstruction algorithms are required to achieve good imaging depth and a reasonable resolution. Ultrasound (US), on the otherhand, is less scattered by soft tissues and it has been in use for imaging in biomedical ultrasound systems. Combination of the contrast sensitivity of light and good localization of ultrasound provides a challenging technique for characterization of thicker tissues deep inside the body non-invasively. The elasticity of the tissues is characterized by studying the response of tissues to mechanical excitation induced by an acoustic radiation force (remotely) using an optical laser. The US modulated optical signals which traverse the tissue are detected by using a CCD camera as detector array and the pixel map formed on the CCD is used to characterize the embedded inhomogeneities. The use of CCD camera improves the signal-noise-ratio (SNR) by averaging the signals from all of the CCD pixels.
Resumo:
Current versus voltage characteristics (I-V) of nanocrystalline SnO2 materials have been investigated in air at room temperature. The samples were prepared by the inert gas condensation technique (IGCT) as well as by chemical methods. X-ray diffraction studies showed a tetragonal rutile structure for all the samples. Microstructural studies were performed with transmission electron microscopy. All the samples exhibited nonlinear I-V characteristics of the current-controlled negative resistance (CCNR) type. The results show that the threshold field (break down) voltage is higher for the samples prepared by the IGCT method than for those prepared by the chemical method due to the formation of a tin oxide layer over the crystalline tin. It is also found that the threshold field increases with the decrease in grain size.
Resumo:
According to Wen's theory, a universal behavior of the fractional quantum Hall edge is expected at sufficiently low energies, where the dispersion of the elementary edge excitation is linear. A microscopic calculation shows that the actual dispersion is indeed linear at low energies, but deviates from linearity beyond certain energy, and also exhibits an "edge roton minimum." We determine the edge exponent from a microscopic approach, and find that the nonlinearity of the dispersion makes a surprisingly small correction to the edge exponent even at energies higher than the roton energy. We explain this insensitivity as arising from the fact that the energy at maximum spectral weight continues to show an almost linear behavior up to fairly high energies. We also study, in an effective-field theory, how interactions modify the exponent for a reconstructed edge with multiple edge modes. Relevance to experiment is discussed.
Resumo:
There are a number of large networks which occur in many problems dealing with the flow of power, communication signals, water, gas, transportable goods, etc. Both design and planning of these networks involve optimization problems. The first part of this paper introduces the common characteristics of a nonlinear network (the network may be linear, the objective function may be non linear, or both may be nonlinear). The second part develops a mathematical model trying to put together some important constraints based on the abstraction for a general network. The third part deals with solution procedures; it converts the network to a matrix based system of equations, gives the characteristics of the matrix and suggests two solution procedures, one of them being a new one. The fourth part handles spatially distributed networks and evolves a number of decomposition techniques so that we can solve the problem with the help of a distributed computer system. Algorithms for parallel processors and spatially distributed systems have been described.There are a number of common features that pertain to networks. A network consists of a set of nodes and arcs. In addition at every node, there is a possibility of an input (like power, water, message, goods etc) or an output or none. Normally, the network equations describe the flows amoungst nodes through the arcs. These network equations couple variables associated with nodes. Invariably, variables pertaining to arcs are constants; the result required will be flows through the arcs. To solve the normal base problem, we are given input flows at nodes, output flows at nodes and certain physical constraints on other variables at nodes and we should find out the flows through the network (variables at nodes will be referred to as across variables).The optimization problem involves in selecting inputs at nodes so as to optimise an objective function; the objective may be a cost function based on the inputs to be minimised or a loss function or an efficiency function. The above mathematical model can be solved using Lagrange Multiplier technique since the equalities are strong compared to inequalities. The Lagrange multiplier technique divides the solution procedure into two stages per iteration. Stage one calculates the problem variables % and stage two the multipliers lambda. It is shown that the Jacobian matrix used in stage one (for solving a nonlinear system of necessary conditions) occurs in the stage two also.A second solution procedure has also been imbedded into the first one. This is called total residue approach. It changes the equality constraints so that we can get faster convergence of the iterations.Both solution procedures are found to coverge in 3 to 7 iterations for a sample network.The availability of distributed computer systems — both LAN and WAN — suggest the need for algorithms to solve the optimization problems. Two types of algorithms have been proposed — one based on the physics of the network and the other on the property of the Jacobian matrix. Three algorithms have been deviced, one of them for the local area case. These algorithms are called as regional distributed algorithm, hierarchical regional distributed algorithm (both using the physics properties of the network), and locally distributed algorithm (a multiprocessor based approach with a local area network configuration). The approach used was to define an algorithm that is faster and uses minimum communications. These algorithms are found to converge at the same rate as the non distributed (unitary) case.
Resumo:
An attempt is made to study the Einstein relation for the diffusivity-to-mobility ratio (DMR) under crossed fields' configuration in nonlinear optical materials on the basis of a newly formulated electron dispersion law by incorporating the crystal field in the Hamiltonian and including the anisotropies of the effective electron mass and the spin-orbit splitting constants within the framework of kp formalisms. The corresponding results for III-V, ternary and quaternary compounds form a special case of our generalized analysis. The DMR has also been investigated for II-VI and stressed materials on the basis of various appropriate dispersion relations. We have considered n-CdGeAs2, n-Hg1-xCdxTe, n-In1-xGaxAsyP1-y lattice matched to InP, p-CdS and stressed n-InSb materials as examples. The DMR also increases with increasing electric field and the natures of oscillations are totally band structure dependent with different numerical values. It has been observed that the DMR exhibits oscillatory dependences with inverse quantizing magnetic field and carrier degeneracy due to the Subhnikov-de Haas effect. An experimental method of determining the DMR for degenerate materials in the present case has been suggested. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Nonlinear conduction in a single crystal of charge-ordered Pr0.63Ca0.37MnO3 has bren investigated in an applied magnetic field. In zero field, the nonlinear conduction, which starts at T< T-CO, can give rise to a region of negative differential resistance (NDR) which shows up below the Neel temperature. Application of a magnetic field Inhibits the appearance of NDR and makes the nonlinear conduction strongly hysteritic on cycling of the bias current. This is most severe in the temperature range where the charge-ordered state melts in an applied magnetic field. Our experiment strongly suggests that application of a magnetic field in the charge-ordering regime causes a coexistence of two phases.