108 resultados para NF93-136


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The orientational relaxation dynamics of water confined between mica surfaces is investigated using molecular dynamics simulations. The study illustrates the wide heterogeneity that exists in the dynamics of water adjacent to a strongly hydrophilic surface such as mica. Analysis of the survival probabilities in different layers is carried out by normalizing the corresponding relaxation times with bulk water layers of similar thickness. A 10-fold increase in the survival times is observed for water directly in contact with the mica surface and a non-monotonic variation in the survival times is observed moving away from the mica surface to the bulk-like interior. The orientational relaxation time is highest for water in the contact layer, decreasing monotonically away from the surface. In all cases the ratio of the relaxation times of the 1st and 2nd rank Legendre polynomials of the HH bond vector is found to lie between 1.5 and 1.9 indicating that the reorientational relaxation in the different water layers is governed by jump dynamics. The orientational dynamics of water in the contact layer is particularly novel and is found to undergo distinct two-dimensional hydrogen bond jump reorientational dynamics with an average waiting time of 4.97 ps. The waiting time distribution is found to possess a long tail extending beyond 15 ps. Unlike previously observed jump dynamics in bulk water and other surfaces, jump events in the mica contact layer occur between hydrogen bonds formed by the water molecule and acceptor oxygens on the mica surface. Despite slowing down of the water orientational relaxation near the surface, life-times of water in the hydration shell of the K ion are comparable to that observed in bulk salt solutions. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4717710]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated quadratic nonlinearity (beta(HRS)) and linear and circular depolarization ratios (D and D', respectively) of a series of 1:1 complexes of tropyliumtetrafluoroborate as a cation and methyl-substituted benzenes as pi-donors by making polarization resolved hyper-Rayleigh scattering measurements in solution. The measured D and D' values are much lower than the values expected from a typical sandwich or a T-shaped geometry of a complex. In the cation-pi complexes studied here, the D value varies from 1.36 to 1.46 and D' from 1.62 to 1.72 depending on the number of methyl substitutions on the benzene ring. In order to probe it further, beta, D and D' were computed using the Zerner intermediate neglect of differential overlap-correction vector self-consistent reaction field technique including single and double configuration interactions in the absence and presence of BF4- anion. In the absence of the anion, the calculated value of D varies from 4.20 to 4.60 and that of D' from 2.45 to 2.72 which disagree with experimental values. However, by arranging three cation-pi BF4- complexes in a trigonal symmetry, the computed values are brought to agreement with experiments. When such an arrangement was not considered, the calculated beta values were lower than the experimental values by more than a factor of two. This unprecedented influence of the otherwise ``unimportant'' anion in solution on the beta value and depolarization ratios of these cation-pi complexes is highlighted and emphasized in this paper. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4716020]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two different experimental studies of polymer dynamics based on single-molecule fluorescence imaging have recently found evidence of heterogeneities in the widths of the putative tubes that surround filaments of F-actin during their motion in concentrated solution. In one J. Glaser, D. Chakraborty, K. Kroy, I. Lauter, M. Degawa, N. Kirchesner, B. Hoffmann, R. Merkel, and M. Giesen, Phys. Rev. Lett. 105, 037801 (2010)], the observations were explained in terms of the statistics of a worm-like chain confined to a potential determined self-consistently by a binary collision approximation, and in the other B. Wang, J. Guan, S. M. Anthony, S. C. Bae, K. S. Schweizer, and S. Granick, Phys. Rev. Lett. 104, 118301 (2010)], they were explained in terms of the scaling properties of a random fluid of thin rods. In this paper, we show, using an exact path integral calculation, that the distribution of the length-averaged transverse fluctuations of a harmonically confined weakly bendable rod (one possible realization of a semiflexible chain in a tube), is in good qualitative agreement with the experimental data, although it is qualitatively different in analytic structure from the earlier theoretical predictions. We also show that similar path integral techniques can be used to obtain an exact expression for the time correlation function of fluctuations in the tube cross section. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4712306]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grain growth during indentation at low temperatures has been taken to imply that grain growth is largely stress induced and athermal in nanometals. Indentation experiments on electrodeposited nano-Ni indicate clearly that the load required for grain growth decreases with an increase in temperature, suggesting strongly that concurrent grain growth is thermally activated. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical reactions inside cells are typically subject to the effects both of the cell's confining surfaces and of the viscoelastic behavior of its contents. In this paper, we show how the outcome of one particular reaction of relevance to cellular biochemistry - the diffusion-limited cyclization of long chain polymers - is influenced by such confinement and crowding effects. More specifically, starting from the Rouse model of polymer dynamics, and invoking the Wilemski-Fixman approximation, we determine the scaling relationship between the mean closure time t(c) of a flexible chain (no excluded volume or hydrodynamic interactions) and the length N of its contour under the following separate conditions: (a) confinement of the chain to a sphere of radius d and (b) modulation of its dynamics by colored Gaussian noise. Among other results, we find that in case (a) when d is much smaller than the size of the chain, t(c) similar to Nd-2, and that in case (b), t(c) similar to N-2/(2 (2H)), H being a number between 1/2 and 1 that characterizes the decay of the noise correlations. H is not known a priori, but values of about 0.7 have been used in the successful characterization of protein conformational dynamics. At this value of H (selected for purposes of illustration), t(c) similar to N-3.4, the high scaling exponent reflecting the slow relaxation of the chain in a viscoelastic medium. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4729041]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most of the restriction endonucleases (REases) are dependent on Mg2+ for DNA cleavage, and in general, Ca2+ inhibits their activity. RKpnI, an HNH active site containing beta beta alpha-Me finger nuclease, is an exception. In presence of Ca2+, the enzyme exhibits high-fidelity DNA cleavage and complete suppression of Mg2+-induced promiscuous activity. To elucidate the mechanism of unusual Ca2+-mediated activity, we generated alanine variants in the putative Ca-2+ binding motif, E(132)xD(134)xD(136), of the enzyme. Mutants showed decreased levels of DNA cleavage in the presence of Ca2+. We demonstrate that ExDxD residues are involved in Ca2+ coordination; however, the invariant His of the catalytic HNH motif acts as a general base for nucleophile activation, and the other two active site residues, D148 and Q175, also participate in Ca2+-mediated cleavage. Insertion of a 10-amino acid linker to disrupt the spatial organization of the ExDxD and HNH motifs impairs Ca2+ binding and affects DNA cleavage by the enzyme. Although ExDxD mutant enzymes retained efficient cleavage at the canonical sites in the presence of Mg2+, the promiscuous activity was greatly reduced, indicating that the carboxyl residues of the acidic triad play an important role in sequence recognition by the enzyme. Thus, the distinct Ca2+ binding motif that confers site specific cleavage upon Ca2+ binding is also critical for the promiscuous activity of the Mg2+-bound enzyme, revealing its role in metal ion-mediated modulation of DNA cleavage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polycrystalline powders of Ba1-xCaxBi4Ti4O15 (where x = 0, 0.25, 0.50, 0.75 and 1) were prepared via the conventional solid-state reaction route. X-ray diffraction (XRD) and Raman scattering techniques have been employed to probe into the structural changes on changing x. XRD analyses confirmed the formation of monophasic bismuth layered structure of all the above compositions with an increase in orthorhombic distortion with increase in x. Raman spectra revealed a redshift in A(1g) peak and an increase in the B-2g/B-3g splitting with increasing Ca content. The average grain size was found to increase with increasing x. The temperature of the maximum dielectric constant (T-m) increased linearly with increasing Ca-content whereas the diffuseness of the phase transition was found to decrease with the end member CaBi4Ti4O15 showing a frequency independent sharp phase transition around 1048 K. Ca doping resulted in a decrease in the remnant polarization and an increase in the coercive field. Ba0.75Ca0.25Bi4Ti4O15 ceramics showed an enhanced piezoelectric coefficient d(33) of 15 pC N-1 at room temperature. Low values of dielectric losses and tunability of temperature coefficient of dielectric constant (tau(epsilon)) in the present solid-solution suggest that these compounds can be of potential use in microwave dielectrics at high temperatures. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energy and energy services are the backbone of growth and development in India and is increasingly dependent upon the use of fossil based fuels that lead to greenhouse gases (GHG) emissions and related concerns. Algal biofuels are being evolved as carbon (C)-neutral alternative biofuels. Algae are photosynthetic microorganisms that convert sunlight, water and carbon dioxide (CO2) to various sugars and lipids Tri-Acyl-Glycols (TAG) and show promise as an alternative, renewable and green fuel source for India. Compared to land based oilseed crops algae have potentially higher yields (5-12 g/m(2)/d) and can use locations and water resources not suited for agriculture. Within India, there is little additional land area for algal cultivation and therefore needs to be carried out in places that are already used for agriculture, e.g. flooded paddy lands (20 Mha) with village level technologies and on saline wastelands (3 Mha). Cultivating algae under such conditions requires novel multi-tier, multi-cyclic approaches of sharing land area without causing threats to food and water security as well as demand for additional fertilizer resources by adopting multi-tier cropping (algae-paddy) in decentralized open pond systems. A large part of the algal biofuel production is possible in flooded paddy crop land before the crop reaches dense canopies, in wastewaters (40 billion litres per day), in salt affected lands and in nutrient/diversity impoverished shallow coastline fishery. Mitigation will be achieved through avoidance of GHG, C-capture options and substitution of fossil fuels. Estimates made in this paper suggest that nearly half of the current transportation petro-fuels could be produced at such locations without disruption of food security, water security or overall sustainability. This shift can also provide significant mitigation avenues. The major adaptation needs are related to socio-technical acceptance for reuse of various wastelands, wastewaters and waste-derived energy and by-products through policy and attitude change efforts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crop type classification using remote sensing data plays a vital role in planning cultivation activities and for optimal usage of the available fertile land. Thus a reliable and precise classification of agricultural crops can help improve agricultural productivity. Hence in this paper a gene expression programming based fuzzy logic approach for multiclass crop classification using Multispectral satellite image is proposed. The purpose of this work is to utilize the optimization capabilities of GEP for tuning the fuzzy membership functions. The capabilities of GEP as a classifier is also studied. The proposed method is compared to Bayesian and Maximum likelihood classifier in terms of performance evaluation. From the results we can conclude that the proposed method is effective for classification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Frictionally constrained condition implies dependence of friction force on tangential displacement amplitude. The condition may occur due to chemical, physical, and/or mechanical interaction between the contacting surfaces. The condition, sometimes also referred to as the presliding condition or partial slip condition, is characterized under fretting. Under such conditions, various experimental studies indicate the existence of two distinguishable regions, that is, stick region and slip region. In the present study, frictionally constrained conditions are identified and the evolutions of stick-slip regions are investigated in detail. Investigations have been performed on self-mated stainless steel and chromium carbide coated surfaces mated against stainless steel, under both vacuum and ambient conditions. Contact conditions prevailing at the contact interface were identified based on the mechanical responses and were correlated with the surface damage observed. Surface degradation has been observed in the form of microcracks and material transfer. Detailed numerical analysis has also been performed in order to understand the energy dissipation and the damage mode involved in the surface or subsurface damage. It has been observed that under frictionally constrained conditions, the occurrence of annular slip features are mainly due to the junction growth, resulting from elastic-plastic deformation at the contact interface. Ratcheting has been observed as the governing damage mode under cyclic tangential loading condition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of polyesters based on 2-propargyl-1,3-propanediol or 2,2-dipropargyl-1,3-propanediol or 2-allyl-2-propargyl-1,3-propanediol and 1,20-eicosanedioic acid were prepared by solution polycondensation using the corresponding diacid chloride; these polyesters were quantitatively ``clicked'' with a fluoroalkyl, azide, namely CF3(CF2)(7)CH2CH2N3, to yield polyesters carrying long-chain alkylene segments in the backbone and either one or two perfluoroalkyl segments located at periodic intervals along the polymer chain. The immiscibility of the alkylene and fluoroalkyl segments causes the polymer chains to fold in a zigzag fashion to facilitate the segregation of these segments; the folded chains further organize in the solid state to form a lamellar structure with alternating domains of alkyl (HC) and fluoroalkyl (FC) segments. Evidence for the self-segregation is provided by DSC, SAXS, WAXS, and TEM studies; in two of the samples, the DSC thermograms showed two distinct endotherms associated with the melting of the individual domains, while the WAXS patterns confirm the existence of two separate peaks corresponding to the interchain distances within the crystalline lattices of the HC and FC domains. SAXS data, on the other hand, reveal the formation of an extended lamellar morphology with an interlamellar spacing that matches reasonably well with those estimated from TEM studies. Interestingly, a smectic-type liquid crystalline phase is observed at temperatures between the two melting transitions. These systems present a unique opportunity to develop interesting nanostructured polymeric materials with precise control over both the domain size and morphology; importantly, the domain sizes are far smaller than those typically observed in traditional block copolymers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the Himalaya, large areas are covered by glaciers and seasonal snow. They are an important source of water for the Himalayan rivers. In this article, observed changes in glacial extent and mass balance have been discussed. Various studies suggest that most of the Himalayan glaciers are retreating though the rate of retreat varies from glacier to glacier, ranging from a few meters to almost 61 m/year, depending upon the terrain and meteorological parameters. In addition, mapping of almost 11,000 out of 40,000 sq. km of glaciated area, distributed in all major climatic zones of the Himalaya, suggests an almost 13% loss in area in the last 4-5 decades. The glacier mass balance observations and estimates made using methods like field, AAR, ELA and geodetic measurements, suggest a significant increase in mass wastage of Himalayan glaciers in the last 3-4 decades. In the last four decades loss in glacial ice has been estimated at 19 +/- 7 m. This suggests loss of 443 +/- 136 Gt of glacial mass out of a total 3600-4400 Gt of glacial stored water in the Indian Himalaya. This study has also shown that mean loss in glacier mass in the Indian Himalaya is accelerated from -9 +/- 4 to -20 +/- 4 Gt/year between the periods 1975-85 and 2000-2010. The estimate of glacial stored water in the Indian Himalaya is based on glacier inventory on a 1 : 250,000 scale and scaling methods; therefore, we assume uncertainties to be large.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detailed magnetization and magneto-transport measurements studies are carried out to unearth the anomalous magnetism of Pr in PrCoAsO compound. The studied PrCoAsO sample is single phase and crystallized in the tetragonal structure with space group P4/nmm in analogy of ZrCuSiAs type compounds. Detailed magnetization measurements showed that Co moments in PrCoAsO exhibit weakly itinerant ferromagnetic Co spins ordering at below 80 K with a small magnetic moments of similar to 0.12 mu B/f.u. High temperatures Curie-Weiss fit, resulted in effective paramagnetic moment mu(eff) (exp) of 5.91 mu(B)/f.u., which can be theoretically assigned to 3d Co (3.88 mu(B)) and 4f Pr (3.58 mu(B)). Further, a positive Curie-Weiss temperature (Theta) of 136 K is seen, indicating predominant ferromagnetic interactions in PrCoAsO. Detailed transport measurements showed that PrCoAsO exhibit metallic behavior and negative magneto-resistance below ferro-magnetically (FM) ordered state. Surprisingly, the situation of PrCoAsO is similar to non magnetic La containing LaCoAsO and strikingly different than that as reported for magnetic Nd, Sm and Gd i.e., (Nd/Sm/Gd)CoAsO. The magnetic behavior of PrCoAsO being closed to LaCoAsO and strikingly different to that of (Nd/Sm/Gd)CoAsO is unusual. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the effect of local defects, viz., cracks and cutouts on the buckling behaviour of functionally graded material plates subjected to mechanical and thermal load is numerically studied. The internal discontinuities, viz., cracks and cutouts are represented independent of the mesh within the framework of the extended finite element method and an enriched shear flexible 4-noded quadrilateral element is used for the spatial discretization. The properties are assumed to vary only in the thickness direction and the effective properties are estimated using the Mori-Tanaka homogenization scheme. The plate kinematics is based on the first order shear deformation theory. The influence of various parameters, viz., the crack length and its location, the cutout radius and its position, the plate aspect ratio and the plate thickness on the critical buckling load is studied. The effect of various boundary conditions is also studied. The numerical results obtained reveal that the critical buckling load decreases with increase in the crack length, the cutout radius and the material gradient index. This is attributed to the degradation in the stiffness either due to the presence of local defects or due to the change in the material composition. (C) 2013 Elsevier Masson SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Saccharomyces boulardii was encapsulated by layer-by-layer technique (LbL) using oppositely charged polyelectrolytes, chitosan and dextran sulfate to protect from degradation during its gastrointestinal transit. The protective effect of the coating was evaluated by checking viability after subjecting the coated cells to lyophilisation and simulated gastrointestinal conditions. During lyophilization, coated S. boulardii was found to have an enhanced viability of 7.74 +/- 2.00 log CFU/100 mg (5.62 x 10(6) +/- 2.12 CFU/100 mg) and 5.53 +/- 1.85 log CFU/100 mg (3.46 x 10(5) 1.73 CFU/100 mg) for uncoated cells. On sequential treatment with simulated gastric and intestinal juice, the coated cells had a viability of 4.59 +/- 1.52 log CFU/100 mg (3.8 x 104 +/- 1.52 CFU/100 mg) while only 1.90 +/- 0.80 log CFU/100 mg (0.79 x 102 +/- 0.81 CFU/100 mg) of uncoated cells survived. Confocal studies displayed the selective permeability of the coated cells which plays a significant role in maintaining the integrity and viability of the yeast cells. This clearly indicates that LbL is an efficient protective encapsulation technique and it could be potentially used for improving therapeutic applications of yeast. (C) 2014 Elsevier Ltd. All rights reserved.