156 resultados para Molecular Dynamics, Simulation, Modeling, Protein, Coarse Graining


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have carried out Brownian dynamics simulations of binary mixtures of charged colloidal suspensions of two different diameter particles with varying volume fractions phi and charged impurity concentrations n(i). For a given phi, the effective temperature is lowered in many steps by reducing n(i) to see how structure and dynamics evolve. The structural quantities studied are the partial and total pair distribution functions g(tau), the static structure factors, the time average g(<(tau)over bar>), and the Wendt-Abraham parameter. The dynamic quantity is the temporal evolution of the total meansquared displacement (MSD). All these parameters show that by lowering the effective temperature at phi = 0.2, liquid freezes into a body-centered-cubic crystal whereas at phi = 0.3, a glassy state is formed. The MSD at intermediate times shows significant subdiffusive behavior whose time span increases with a reduction in the effective temperature. The mean-squared displacements for the supercooled liquid with phi = 0.3 show staircase behavior indicating a strongly cooperative jump motion of the particles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A molecular dynamics calculation of argon in NaCaA zeolite at 393 K and 1 atom per cage is reported. Equilibrium properties such as guest-host interaction energy, guest-guest dimerization and bonding energy, various guest-host and guest-guest radial distribution functions and dynamical properties such as the mean-square displacement, power spectra and diffusion coefficient have been obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2',3'-cyclic nucleotides are intermediates and substrates of Ribonuclease (RNase)-catalysed reactions. The characterization of the equilibrium conformation as well as the flexibility inherent in these molecules helps in understanding the enzymatic action of RNases. The present study explores parameters like phase angle, glycosydic torsion angle and hydrogen bond to find possible interrelationship between them through Molecular Dynamics (MD) simulations on 3'-GMP, 3'-UMP, A>p, G>p, U>p, C>p, GpA>p and UpA>p. Interesting results of the effect of cyclisation and other constraints such as hydrogen bond between certain groups on the equilibrium ribose conformation have emerged from this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics (MD) simulations on rigid and flexible framework models of silicalite and a rigid framework model of the aluminophosphate VPI-5 for different sorbate diameters are reported. The sorbate-host interactions are modeled in terms of simple atom-atom Lennard-Jones interactions. The results suggest that the diffusion coefficient exhibits an anomaly as gamma approaches unity. The MD results confirm the existence of a linear regime for sorbate diameters significantly smaller than the channel diameter and an anomalous regime observed for sorbate diameters comparable to the channel diameter. The power spectra obtained by Fourier transformation of the velocity autocorrelation function indicate that there is an increase in the intensity of the low-frequency component for the velocity component parallel to the direction of motion for the sorbate diameter in the anomalous regime. The present results suggest that the diffusion anomaly is observed irrespective of (1) the geometry and topology of the pore structure and (2) the nature of the host material. The results are compared with the work of Derouane and co-workers, who have suggested the existence of ''floating molecules'' on the basis of earlier theoretical and computational approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the results of molecular-dynamics simulations of systems of dumbbell molecules confined by parallel molecular walls. We have carried out systematic studies of three cases: freezing, steady flows, and stick-slip friction. We find that the molecular orientational degrees of freedom cause the surface layers to deviate from a planar configuration. Nevertheless, steady flows, in a channel as narrow as 15 molecular sizes, display continuum behavior. A range of mechanisms in the dynamics of the freezing of a confined fluid is found, as a function of the wall-fluid interactions and the bond length of the dumbbell molecules. The simple order-disorder transition associated with stick-slip motion in the presence of a layer of monoatomic lubricant molecules is supplanted by more complex behavior due to rotational degrees of freedom of the diatomic molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental ionic conductivity of different alkali ions in water shows markedly different dependences on pressure. Existing theories such as that of Hubbard-Onsager are unable to explain these dependences on pressure of the ionic conductivity for all ions. We report molecular dynamics investigation of potassium chloride solution at low dilution in water at several pressures between 1 bar and 2 kbar. Two different potential models have been employed. One of the models successfully reproduces the experimentally observed trend in ionic conductivity of K+ ions in water over the 0.001-2 kbar range. We also propose a theoretical explanation, albeit at a qualitative level, to account for the dependence of ionic conductivity on pressure in terms of the previously studied Levitation Effect. It also provides a microscopic picture in terms of the pore network in liquid water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three-dimensional (3D) structure of a hairpin DNA d-CTAGAGGATCCTTTUGGATCCT (22mer; abbreviated as U4-hairpin), which has a uracil nucleotide unit at the fourth position from the 5' end of the tetra-loop has been solved by NMR spectroscopy. The H-1 resonances of this hairpin have been assigned almost completely. NMR restrained molecular dynamics and energy minimisation procedures have been used to describe the 3D structure of the U4 hairpin. This study establishes that the stem of the hairpin adopts a right handed B-DNA conformation while the T-12 and U-15 nucleotide stack upon 3' and 5' ends of the stem, respectively. Further, T-14 stacks upon both T-12 and U-15 while T-13 partially stacks upon T-14. Very weak stacking interaction is observed between T-13 and T-12. All the individual nucleotide bases adopt 'anti' conformation with respect to their sugar moiety. The turning phosphate in the loop is located between T-13 and T-14. The stereochemistry of U-15 mimics the situation where uracil would stack in a B-DNA conformation. This could be the reason as to why the U4-hairpin is found to be the best substrate for its interaction with uracil DNA glycosylase (UDG) compared to the other substrates in which the uracil is at the first, second and third positions of the tetra-loop from its 5' end, as reported previously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamics of water molecules near an aqueous micellar interface is studied in an atomistic molecular dynamics simulation of cesium pentadecafluorooctanoate (CsPFO) in water. The dipolar orientational time correlation function (tcf) and the translational diffusion of the water molecules are investigated. Results show that both the reorientational and the translational motion of water molecules near the micelle are restricted. In particular, the orientational tcf exhibits a very slow component in the long time which is slower than its bulk value by 2 orders of magnitude. This slow decay seems to be related to the slow decay often observed in experiments. The origin of the slow decay is analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Femtosecond spectroscopy carried out earlier on Monellin and some other systems has given insights into the hydration dynamics of the proteins. In the present work, molecular dynamics simulations have been performed on Monellin to study the hydration dynamics. A method has been described to follow up the molecular events of the protein–water interactions in detail. The time constants of the survival correlation function match well with the reported experimental values. This validates the procedure, adapted here for Monellin, to investigate the hydration dynamics in general.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein structure networks are constructed for the identification of long-range signaling pathways in cysteinyl tRNA synthetase (CysRS). Molecular dynamics simulation trajectory of CysRS-ligand complexes were used to determine conformational ensembles in order to gain insight into the allosteric signaling paths. Communication paths between the anticodon binding region and the aminoacylation region have been identified. Extensive interaction between the helix bundle domain and the anticodon binding domain, resulting in structural rigidity in the presence of tRNA, has been detected. Based on the predicted model, six residues along the communication paths have been examined by mutations (single and double) and shown to mediate a coordinated coupling between anticodon recognition and activation of amino acid at the active site. This study on CysRS clearly shows that specific key residues, which are involved in communication between distal sites in allosteric proteins but may be elusive in direct structure analysis, can be identified from dynamics of protein structure networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dimeric banana lectin and calsepa, tetrameric artocarpin and octameric heltuba are mannose-specific beta-prism I fold lectins of nearly the same tertiary structure. MD simulations on individual subunits and the oligomers provide insights into the changes in the structure brought about in the protomers on oligomerization, including swapping of the N-terminal stretch in one instance. The regions that undergo changes also tend to exhibit dynamic flexibility during MD simulations. The internal symmetries of individual oligomers are substantially retained during the calculations. Energy minimization and simulations were also carried out on models using all possible oligomers by employing the four different protomers. The unique dimerization pattern observed in calsepa could be traced to unique substitutions in a peptide stretch involved in dimerization. The impossibility of a specific mode of oligomerization involving a particular protomer is often expressed in terms of unacceptable steric contacts or dissociation of the oligomer during simulations. The calculations also led to a rationale for the observation of a heltuba tetramer in solution although the lectin exists as an octamer in the crystal, in addition to providing insights into relations among evolution, oligomerization and ligand binding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent optical kerr effect (OKE) studies have demonstrated that orientational relaxation of rod-like nematogens exhibits temporal power law decay at intermediate times not only near the isotropic–nematic (I–N) phase boundary but also in the nematic phase. Such behaviour has drawn an intriguing analogy with supercooled liquids. We have investigated both collective and single-particle orientational dynamics of a family of model system of thermotropic liquid crystals using extensive computer simulations. Several remarkable features of glassy dynamics are on display including non-exponential relaxation, dynamical heterogeneity, and non-Arrhenius temperature dependence of the orientational relaxation time. Over a temperature range near the I–N phase boundary, the system behaves remarkably like a fragile glass-forming liquid. Using proper scaling, we construct the usual relaxation time versus inverse temperature plot and explicitly demonstrate that one can successfully define a density dependent fragility of liquid crystals. The fragility of liquid crystals shows a temperature and density dependence which is remarkably similar to the fragility of glass forming supercooled liquids. Energy landscape analysis of inherent structures shows that the breakdown of the Arrhenius temperature dependence of relaxation rate occurs at a temperature that marks the onset of the growth of the depth of the potential energy minima explored by the system. A model liquid crystal, consisting of disk-like molecules, has also been investigated in molecular dynamics simulations for orientational relaxation along two isobars starting from the high temperature isotropic phase. The isobars have been so chosen that the phase sequence isotropic (I)–nematic (N)–columnar (C) appears upon cooling along one of them and the sequence isotropic (I)–columnar(C) along the other. While the orientational relaxation in the isotropic phase near the I–N phase transition shows a power law decay at short to intermediate times, such power law relaxation is not observed in the isotropic phase near the I–C phase boundary. The origin of the power law decay in the single-particle second-rank orientational time correlation function (OTCF) is traced to the growth of the orientational pair distribution functions near the I–N phase boundary. As the system settles into the nematic phase, the decay of the single-particle second-rank orientational OTCF follows a pattern that is similar to what is observed with calamitic liquid crystals and supercooled molecular liquids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structure of Rv0098, a long-chain fatty acyl-CoA thioesterase from Mycobacterium tuberculosis with bound dodecanoic acid at the active site provided insights into the mode of substrate binding but did not reveal the structural basis of substrate specificities of varying chain length. Molecular dynamics studies demonstrated that certain residues of the substrate binding tunnel are flexible and thus modulate the length of the tunnel. The flexibility of the loop at the base of the tunnel was also found to be important for determining the length of the tunnel for accommodating appropriate substrates. A combination of crystallographic and molecular dynamics studies thus explained the structural basis of accommodating long chain substrates by Rv0098 of M. tuberculosis.