78 resultados para Mean squares
Resumo:
The GW approximation to the electron self-energy has become a standard method for ab initio calculation of excited-state properties of condensed-matter systems. In many calculations, the G W self-energy operator, E, is taken to be diagonal in the density functional theory (DFT) Kohn-Sham basis within the G0 W0 scheme. However, there are known situations in which this diagonal Go Wo approximation starting from DFT is inadequate. We present two schemes to resolve such problems. The first, which we called sc-COHSEX-PG W, involves construction of an improved mean field using the static limit of GW, known as COHSEX (Coulomb hole and screened exchange), which is significantly simpler to treat than GW W. In this scheme, frequency-dependent self energy E(N), is constructed and taken to be diagonal in the COHSEX orbitals after the system is solved self-consistently within this formalism. The second method is called off diagonal-COHSEX G W (od-COHSEX-PG W). In this method, one does not self-consistently change the mean-field starting point but diagonalizes the COHSEX Hamiltonian within the Kohn-Sham basis to obtain quasiparticle wave functions and uses the resulting orbitals to construct the G W E in the diagonal form. We apply both methods to a molecular system, silane, and to two bulk systems, Si and Ge under pressure. For silane, both methods give good quasiparticle wave functions and energies. Both methods give good band gaps for bulk silicon and maintain good agreement with experiment. Further, the sc-COHSEX-PGW method solves the qualitatively incorrect DFT mean-field starting point (having a band overlap) in bulk Ge under pressure.
Resumo:
Local polynomial approximation of data is an approach towards signal denoising. Savitzky-Golay (SG) filters are finite-impulse-response kernels, which convolve with the data to result in polynomial approximation for a chosen set of filter parameters. In the case of noise following Gaussian statistics, minimization of mean-squared error (MSE) between noisy signal and its polynomial approximation is optimum in the maximum-likelihood (ML) sense but the MSE criterion is not optimal for non-Gaussian noise conditions. In this paper, we robustify the SG filter for applications involving noise following a heavy-tailed distribution. The optimal filtering criterion is achieved by l(1) norm minimization of error through iteratively reweighted least-squares (IRLS) technique. It is interesting to note that at any stage of the iteration, we solve a weighted SG filter by minimizing l(2) norm but the process converges to l(1) minimized output. The results show consistent improvement over the standard SG filter performance.
Resumo:
In this article, we look at the political business cycle problem through the lens of uncertainty. The feedback control used by us is the famous NKPC with stochasticity and wage rigidities. We extend the New Keynesian Phillips Curve model to the continuous time stochastic set up with an Ornstein-Uhlenbeck process. We minimize relevant expected quadratic cost by solving the corresponding Hamilton-Jacobi-Bellman equation. The basic intuition of the classical model is qualitatively carried forward in our set up but uncertainty also plays an important role in determining the optimal trajectory of the voter support function. The internal variability of the system acts as a base shifter for the support function in the risk neutral case. The role of uncertainty is even more prominent in the risk averse case where all the shape parameters are directly dependent on variability. Thus, in this case variability controls both the rates of change as well as the base shift parameters. To gain more insight we have also studied the model when the coefficients are time invariant and studied numerical solutions. The close relationship between the unemployment rate and the support function for the incumbent party is highlighted. The role of uncertainty in creating sampling fluctuation in this set up, possibly towards apparently anomalous results, is also explored.