90 resultados para Markov chains, uniformization, inexact methods, relaxed matrix-vector


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pulse width modulation (PWM) techniques involving different switching sequences are used in space vector-based PWM generation for reducing line current ripple in induction motor drives. This study proposes a hybrid PWM technique employing five switching sequences. The proposed technique is a combination of continuous PWM, discontinuous PWM (DPWM) and advanced bus clamping PWM methods. Performance of the proposed PWM technique is evaluated and compared with those of the existing techniques on a constant volts per hertz induction motor drive. In terms of total harmonic distortion in the line current, the proposed method is shown to be superior to both conventional space vector PWM (CSVPWM) and DPWM over a fundamental frequency range of 32-50 Hz at a given average switching frequency. The reduction in harmonic distortion is about 42% over CSVPWM at the rated speed of the drive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we study the problem of designing SVM classifiers when the kernel matrix, K, is affected by uncertainty. Specifically K is modeled as a positive affine combination of given positive semi definite kernels, with the coefficients ranging in a norm-bounded uncertainty set. We treat the problem using the Robust Optimization methodology. This reduces the uncertain SVM problem into a deterministic conic quadratic problem which can be solved in principle by a polynomial time Interior Point (IP) algorithm. However, for large-scale classification problems, IP methods become intractable and one has to resort to first-order gradient type methods. The strategy we use here is to reformulate the robust counterpart of the uncertain SVM problem as a saddle point problem and employ a special gradient scheme which works directly on the convex-concave saddle function. The algorithm is a simplified version of a general scheme due to Juditski and Nemirovski (2011). It achieves an O(1/T-2) reduction of the initial error after T iterations. A comprehensive empirical study on both synthetic data and real-world protein structure data sets show that the proposed formulations achieve the desired robustness, and the saddle point based algorithm outperforms the IP method significantly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce and study a class of non-stationary semi-Markov decision processes on a finite horizon. By constructing an equivalent Markov decision process, we establish the existence of a piecewise open loop relaxed control which is optimal for the finite horizon problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acoustic modeling using mixtures of multivariate Gaussians is the prevalent approach for many speech processing problems. Computing likelihoods against a large set of Gaussians is required as a part of many speech processing systems and it is the computationally dominant phase for LVCSR systems. We express the likelihood computation as a multiplication of matrices representing augmented feature vectors and Gaussian parameters. The computational gain of this approach over traditional methods is by exploiting the structure of these matrices and efficient implementation of their multiplication.In particular, we explore direct low-rank approximation of the Gaussian parameter matrix and indirect derivation of low-rank factors of the Gaussian parameter matrix by optimum approximation of the likelihood matrix. We show that both the methods lead to similar speedups but the latter leads to far lesser impact on the recognition accuracy. Experiments on a 1138 word vocabulary RM1 task using Sphinx 3.7 system show that, for a typical case the matrix multiplication approach leads to overall speedup of 46%. Both the low-rank approximation methods increase the speedup to around 60%, with the former method increasing the word error rate (WER) from 3.2% to 6.6%, while the latter increases the WER from 3.2% to 3.5%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Space vector based PWM strategies for three-level inverters have a broader choice of switching sequences to generate the required reference vector than triangle comparison based PWM techniques. However, space vector based PWM involves numerous steps which are computationally intensive. A simplified algorithm is proposed here, which is shown to reduce the computation time significantly. The developed algorithm is used to implement synchronous and asynchronous conventional space vector PWM, synchronized modified space vector PWM and an asynchronous advanced bus-clamping PWM technique on a low-cost dsPIC digital controller. Experimental results are presented for a comparative evaluation of the performance of different PWM methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel multi-timescale Q-learning algorithm for average cost control in a Markov decision process subject to multiple inequality constraints. We formulate a relaxed version of this problem through the Lagrange multiplier method. Our algorithm is different from Q-learning in that it updates two parameters - a Q-value parameter and a policy parameter. The Q-value parameter is updated on a slower time scale as compared to the policy parameter. Whereas Q-learning with function approximation can diverge in some cases, our algorithm is seen to be convergent as a result of the aforementioned timescale separation. We show the results of experiments on a problem of constrained routing in a multistage queueing network. Our algorithm is seen to exhibit good performance and the various inequality constraints are seen to be satisfied upon convergence of the algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The equivalence of triangle-comparison-based pulse width modulation (TCPWM) and space vector based PWM (SVPWM) during linear modulation is well-known. This paper analyses triangle-comparison based PWM techniques (TCPWM) such as sine-triangle PWM (SPWM) and common-mode voltage injection PWM during overmodulation from a space vector point of view. The average voltage vector produced by TCPWM during overmodulation is studied in the stationary (a-b) reference frame. This is compared and contrasted with the average voltage vector corresponding to the well-known standard two-zone algorithm for space vector modulated inverters. It is shown that the two-zone overmodulation algorithm itself can be derived from the variation of average voltage vector with TCPWM. The average voltage vector is further studied in a synchronously revolving (d-q) reference frame. The RMS value of low-order voltage ripple can be estimated, and can be used to compare harmonic distortion due to different PWM methods during overmodulation. The measured values of the total harmonic distortion (THD) in the line currents are presented at various fundamental frequencies. The relative values of measured current THD pertaining to different PWM methods tally with those of analytically evaluated RMS voltage ripple.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the application of support vector clustering (SVC) for the direct identification of coherent synchronous generators in large interconnected multi-machine power systems. The clustering is based on coherency measure, which indicates the degree of coherency between any pair of generators. The proposed SVC algorithm processes the coherency measure matrix that is formulated using the generator rotor measurements to cluster the coherent generators. The proposed approach is demonstrated on IEEE 10 generator 39-bus system and an equivalent 35 generators, 246-bus system of practical Indian southern grid. The effect of number of data samples and fault locations are also examined for determining the accuracy of the proposed approach. An extended comparison with other clustering techniques is also included, to show the effectiveness of the proposed approach in grouping the data into coherent groups of generators. This effectiveness of the coherent clusters obtained with the proposed approach is compared in terms of a set of clustering validity indicators and in terms of statistical assessment that is based on the coherency degree of a generator pair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural Support Vector Machines (SSVMs) and Conditional Random Fields (CRFs) are popular discriminative methods used for classifying structured and complex objects like parse trees, image segments and part-of-speech tags. The datasets involved are very large dimensional, and the models designed using typical training algorithms for SSVMs and CRFs are non-sparse. This non-sparse nature of models results in slow inference. Thus, there is a need to devise new algorithms for sparse SSVM and CRF classifier design. Use of elastic net and L1-regularizer has already been explored for solving primal CRF and SSVM problems, respectively, to design sparse classifiers. In this work, we focus on dual elastic net regularized SSVM and CRF. By exploiting the weakly coupled structure of these convex programming problems, we propose a new sequential alternating proximal (SAP) algorithm to solve these dual problems. This algorithm works by sequentially visiting each training set example and solving a simple subproblem restricted to a small subset of variables associated with that example. Numerical experiments on various benchmark sequence labeling datasets demonstrate that the proposed algorithm scales well. Further, the classifiers designed are sparser than those designed by solving the respective primal problems and demonstrate comparable generalization performance. Thus, the proposed SAP algorithm is a useful alternative for sparse SSVM and CRF classifier design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel switching sequences have been proposed recently for a neutral-point-clamped three-level inverter, controlled effectively as an equivalent two-level inverter. It is shown that the four novel sequences can be grouped into two pairs of sequences. Using each pair of sequences, a hybrid pulsewidth modulation (PWM) technique is proposed, which deploys the two sequences in appropriate spatial regions to reduce the current ripple. Further, a third hybrid PWM technique is proposed which uses all the five sequences (including the conventional sequence) in appropriate spatial regions. Each proposed hybrid PWM is shown, both analytically and experimentally, to outperform its constituent PWM methods in terms of harmonic distortion. In particular, the third proposed hybrid PWM reduces the total harmonic distortion considerably at low- and high-speed ranges of a constant volts-per-hertz induction motor drive, compared to centered space vector PWM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study considers linear filtering methods for minimising the end-to-end average distortion of a fixed-rate source quantisation system. For the source encoder, both scalar and vector quantisation are considered. The codebook index output by the encoder is sent over a noisy discrete memoryless channel whose statistics could be unknown at the transmitter. At the receiver, the code vector corresponding to the received index is passed through a linear receive filter, whose output is an estimate of the source instantiation. Under this setup, an approximate expression for the average weighted mean-square error (WMSE) between the source instantiation and the reconstructed vector at the receiver is derived using high-resolution quantisation theory. Also, a closed-form expression for the linear receive filter that minimises the approximate average WMSE is derived. The generality of framework developed is further demonstrated by theoretically analysing the performance of other adaptation techniques that can be employed when the channel statistics are available at the transmitter also, such as joint transmit-receive linear filtering and codebook scaling. Monte Carlo simulation results validate the theoretical expressions, and illustrate the improvement in the average distortion that can be obtained using linear filtering techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fractal dimension based damage detection method is studied for a composite structure with random material properties. A composite plate with localized matrix crack is considered. Matrix cracks are often seen as the initial damage mechanism in composites. Fractal dimension based method is applied to the static deformation curve of the structure to detect localized damage. Static deflection of a cantilevered composite plate under uniform loading is calculated using the finite element method. Composite material shows spatially varying random material properties because of complex manufacturing processes. Spatial variation of material property is represented as a two dimensional homogeneous Gaussian random field. Karhunen-Loeve (KL) expansion is used to generate a random field. The robustness of fractal dimension based damage detection methods is studied considering the composite plate with spatial variation in material properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the problem of optimizing the workforce of a service system. Adapting the staffing levels in such systems is non-trivial due to large variations in workload and the large number of system parameters do not allow for a brute force search. Further, because these parameters change on a weekly basis, the optimization should not take longer than a few hours. Our aim is to find the optimum staffing levels from a discrete high-dimensional parameter set, that minimizes the long run average of the single-stage cost function, while adhering to the constraints relating to queue stability and service-level agreement (SLA) compliance. The single-stage cost function balances the conflicting objectives of utilizing workers better and attaining the target SLAs. We formulate this problem as a constrained parameterized Markov cost process parameterized by the (discrete) staffing levels. We propose novel simultaneous perturbation stochastic approximation (SPSA)-based algorithms for solving the above problem. The algorithms include both first-order as well as second-order methods and incorporate SPSA-based gradient/Hessian estimates for primal descent, while performing dual ascent for the Lagrange multipliers. Both algorithms are online and update the staffing levels in an incremental fashion. Further, they involve a certain generalized smooth projection operator, which is essential to project the continuous-valued worker parameter tuned by our algorithms onto the discrete set. The smoothness is necessary to ensure that the underlying transition dynamics of the constrained Markov cost process is itself smooth (as a function of the continuous-valued parameter): a critical requirement to prove the convergence of both algorithms. We validate our algorithms via performance simulations based on data from five real-life service systems. For the sake of comparison, we also implement a scatter search based algorithm using state-of-the-art optimization tool-kit OptQuest. From the experiments, we observe that both our algorithms converge empirically and consistently outperform OptQuest in most of the settings considered. This finding coupled with the computational advantage of our algorithms make them amenable for adaptive labor staffing in real-life service systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The voltage ripple and power loss in the DC-capacitor of a voltage source inverter depend on the harmonic currents flowing through the capacitor. This paper presents a double Fourier series based analysis of the harmonic contents of the DC capacitor current in a three-level neutral-point clamped (NPC) inverter, modulated with sine-triangle pulse-width modulation (SPWM) or conventional space vector pulse-width modulation (CSVPWM) schemes. The analytical results are validated experimentally on a 3-kVA three-level inverter prototype. The capacitor current in an NPC inverter has a periodicity of 120(a similar to) at the fundamental or modulation frequency. Hence, this current contains third-harmonic and triplen-frequency components, apart from switching frequency components. The harmonic components vary with modulation index and power factor for both PWM schemes. The third harmonic current decreases with increase in modulation index and also decreases with increase in power factor in case of both PWM methods. In general, the third harmonic content is higher with SPWM than with CSVPWM at a given operating condition. Also, power loss and voltage ripple in the DC capacitor are estimated for both the schemes using the current harmonic spectrum and equivalent series resistance (ESR) of the capacitor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An efficient density matrix renormalization group (DMRG) algorithm is presented and applied to Y junctions, systems with three arms of n sites that meet at a central site. The accuracy is comparable to DMRG of chains. As in chains, new sites are always bonded to the most recently added sites and the superblock Hamiltonian contains only new or once renormalized operators. Junctions of up to N = 3n + 1 approximate to 500 sites are studied with antiferromagnetic (AF) Heisenberg exchange J between nearest-neighbor spins S or electron transfer t between nearest neighbors in half-filled Hubbard models. Exchange or electron transfer is exclusively between sites in two sublattices with N-A not equal N-B. The ground state (GS) and spin densities rho(r) = < S-r(z)> at site r are quite different for junctions with S = 1/2, 1, 3/2, and 2. The GS has finite total spin S-G = 2S(S) for even (odd) N and for M-G = S-G in the S-G spin manifold, rho(r) > 0(< 0) at sites of the larger (smaller) sublattice. S = 1/2 junctions have delocalized states and decreasing spin densities with increasing N. S = 1 junctions have four localized S-z = 1/2 states at the end of each arm and centered on the junction, consistent with localized states in S = 1 chains with finite Haldane gap. The GS of S = 3/2 or 2 junctions of up to 500 spins is a spin density wave with increased amplitude at the ends of arms or near the junction. Quantum fluctuations completely suppress AF order in S = 1/2 or 1 junctions, as well as in half-filled Hubbard junctions, but reduce rather than suppress AF order in S = 3/2 or 2 junctions.