137 resultados para Mach number
Resumo:
A detailed description of radiative interactions in laminar compressible boundary layers for moderate Mach numbers is presented by way of asymptotic analysis and supporting solutions. The radiation field is described by the differential approximation. While the asymptotic analysis is valid for large N (the ratio of photon mean free path to molecular mean free path) and arbitrary Boltzmann number, Bo (the ratio of convective heat flux to radiation heat flux), the solutions are obtained for Bo [double less-than sign] 1, the case of strong radiative interactions. The asymptotic analysis shows the existence of an optically thin boundary layer for large N and all Bo. For Bo [double less-than sign] 1, two outer regions are observed — one optically thin (at short distances from the leading edge) and the other optically thick (at large distances from the leading edge). An interesting feature not pointed out in the previous literature is the existence of a wall layer at large distances from the leading edge where convective heat flux can be ignored to the leading order of approximation. The radiation field in all cases can be very well approximated by a one-dimensional description. The solutions have been constructed using the ideas of matched asymptotic expansions by approximate analytical procedures and numerical methods. It is shown that, to the leading order of approximation, the radiation slip method yields exactly the same result as the more complicated matching procedure. Both the cases of linear and nonlinear radiation have been considered, the former being of interest in developing approximate methods which are subsequently generalized to handle the nonlinear problem. Detailed results are presented for both cases.
Resumo:
We have discussed here the flow of a dilute suspension of rigid particles in Newtonian fluid in slowly varying tubes characterized by a small parameter ε. Solutions are presented in the form of asymptotic expansions in powers of ε. The effect of the suspension on the fluid is described by two parameters β and γ which depend on the volume fraction of the particles which we assume to be small. It is found that the presence of the particles accelerate the process of eddy formation near the constriction and shifts the point of separation.
Resumo:
Let G(V, E) be a simple, undirected graph where V is the set of vertices and E is the set of edges. A b-dimensional cube is a Cartesian product l(1) x l(2) x ... x l(b), where each l(i) is a closed interval of unit length on the real line. The cub/city of G, denoted by cub(G), is the minimum positive integer b such that the vertices in G can be mapped to axis parallel b-dimensional cubes in such a way that two vertices are adjacent in G if and only if their assigned cubes intersect. An interval graph is a graph that can be represented as the intersection of intervals on the real line-i.e. the vertices of an interval graph can be mapped to intervals on the real line such that two vertices are adjacent if and only if their corresponding intervals overlap. Suppose S(m) denotes a star graph on m+1 nodes. We define claw number psi(G) of the graph to be the largest positive integer m such that S(m) is an induced subgraph of G. It can be easily shown that the cubicity of any graph is at least log(2) psi(G)]. In this article, we show that for an interval graph G log(2) psi(G)-]<= cub(G)<=log(2) psi(G)]+2. It is not clear whether the upper bound of log(2) psi(G)]+2 is tight: till now we are unable to find any interval graph with cub(G)> (log(2)psi(G)]. We also show that for an interval graph G, cub(G) <= log(2) alpha], where alpha is the independence number of G. Therefore, in the special case of psi(G)=alpha, cub(G) is exactly log(2) alpha(2)]. The concept of cubicity can be generalized by considering boxes instead of cubes. A b-dimensional box is a Cartesian product l(1) x l(2) x ... x l(b), where each I is a closed interval on the real line. The boxicity of a graph, denoted box(G), is the minimum k such that G is the intersection graph of k-dimensional boxes. It is clear that box(G)<= cub(G). From the above result, it follows that for any graph G, cub(G) <= box(G)log(2) alpha]. (C) 2010 Wiley Periodicals, Inc. J Graph Theory 65: 323-333, 2010
Resumo:
We study the photon-number distribution in squeezed states of a single-mode radiation field. A U(l)-invariant squeezing criterion is compared and contrasted with a more restrictive criterion, with the help of suggestive geometric representations. The U(l) invariance of the photon-number distribution in a squeezed coherent state, with arbitrary complex squeeze and displacement parameters, is explicitly demonstrated. The behavior of the photon-number distribution for a representative value of the displacement and various values of the squeeze parameter is numerically investigated. A new kind of giant oscillation riding as an envelope over more rapid oscillations in this distribution is demonstrated.
Resumo:
The mechanical properties of composites of polymethylmethacrylate (PMMA) with two-dimensional graphene-like boron nitride (BN) have been investigated to explore the dependence of the properties on the number of BN layers. This study demonstrates that significantly improved mechanical properties are exhibited by the composite with the fewest number of BN layers. Thus, with incorporation of three BN layers, the hardness and elastic modulus of the composite showed an increase of 125% and 130%, respectively, relative to pure PMMA. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Higher level of inversion is achieved with a less number of switches in the proposed scheme. The scheme proposes a five-level inverter for an open-end winding induction motor which uses only two DC-link rectifiers of voltage rating of Vdc/4, a neutral-point clamped (NPC) three-level inverter and a two-level inverter. Even though the two-level inverter is connected to the high-voltage side, it is always in square-wave operation. Since the two-level inverter is not switching in a pulse width modulated fashion and the magnitude of switching transient is only half compared to the convention three-level NPC inverter, the switching losses and electromagnetic interference is not so high. The scheme is experimentally verified on a 2.5 kW induction machine.
Resumo:
We present the results of our detailed pseudospectral direct numerical simulation (DNS) studies, with up to 1024(3) collocation points, of incompressible, magnetohydrodynamic (MHD) turbulence in three dimensions, without a mean magnetic field. Our study concentrates on the dependence of various statistical properties of both decaying and statistically steady MHD turbulence on the magnetic Prandtl number Pr-M over a large range, namely 0.01 <= Pr-M <= 10. We obtain data for a wide variety of statistical measures, such as probability distribution functions (PDFs) of the moduli of the vorticity and current density, the energy dissipation rates, and velocity and magnetic-field increments, energy and other spectra, velocity and magnetic-field structure functions, which we use to characterize intermittency, isosurfaces of quantities, such as the moduli of the vorticity and current density, and joint PDFs, such as those of fluid and magnetic dissipation rates. Our systematic study uncovers interesting results that have not been noted hitherto. In particular, we find a crossover from a larger intermittency in the magnetic field than in the velocity field, at large Pr-M, to a smaller intermittency in the magnetic field than in the velocity field, at low Pr-M. Furthermore, a comparison of our results for decaying MHD turbulence and its forced, statistically steady analogue suggests that we have strong universality in the sense that, for a fixed value of Pr-M, multiscaling exponent ratios agree, at least within our error bars, for both decaying and statistically steady homogeneous, isotropic MHD turbulence.
Resumo:
The influence of temperature-dependent viscosity and Prandtl number on the unsteady laminar nonsimilar forced convection flow over two-dimensional and axisymmetric bodies has been examined where the unsteadiness and (or) nonsimilarity are (is) due to the free stream velocity, mass transfer, and transverse curvature. The partial differential equations governing the flow which involve three independent variables have been solved numerically using an implicit finite-difference scheme along with a quasilinearization technique. It is found that both the skin friction and heat transfer strongly respond to the unsteady free stream velocity distributions. The unsteadiness and injection cause the location of zero skin friction to move upstream. However, the effect of variable viscosity and Prandtl number is to move it downstream. The heat transfer is found to depend strongly on viscous dissipation, but the skin friction is little affected by it. In general, the results pertaining to variable fluid properties differ significantly, from those of constant fluid properties.
Resumo:
Thiobacillus ferrooxidans MAL4-1, an isolate from Malanjkhand copper mines, India, was adapted to grow in the presence of high concentration (30 gL(-1)) of Cu2+, resulting in a 15-fold increase in its tolerance to Cu2+. While wild-type T. ferrooxidans MAL4-1 contained multiple plasmids, cultures adapted to Cu2+ concentrations of 20 gL(-1) or more showed a drastic reduction in the copy number of the plasmids. The reduction for three of the plasmids was estimated to be over 50-fold. Examination of the plasmid profiles of the strains adapted to high concentration of SO42- anion (as Na2SO4 or ZnSO4) indicated that the reduction in plasmid copy number is not owing to SO42- anion, but is specific for Cu2+. The effect of mercury on the plasmids was similar to that of copper. Deadaptation of the Cu2+- Or Hg2+-adapted T. ferrooxidans resulted in restoration of the plasmids to the original level within the first passage. The fact that the plasmid copy number, in general, is drastically reduced in Cu2+-adapted T. ferrooxidans suggests that resistance to copper is chromosome mediated. This is the first report of a selective negative influence of copper ions on the copy number of plasmids in T. ferrooxidans.
Resumo:
A study of transpiration cooling of blunt bodies such as a hemicylinder is made by solving Navier-Stokes equations. An upwind, implicit time-marching code is developed for this purpose. The study is conducted for both perfect-gas and real-gas (chemical equilibrium) flows. Investigations are carried out for a special wall condition that is referred to as no heat flow into the wall condition. The effects of air injection on wall temperature are analyzed. Analyses are carried out for Mach numbers ranging between 6-10 and Reynolds numbers ranging between 10(6)-10(7). Studies are made for spatially constant as well as spatially varying mass injection rate distributions, White cold air injection reduces the wall temperature substantially, transpiration cooling is relatively less effective when the gas is in chemical equilibrium.
Resumo:
Transpiration cooling over a flat plate at hypersonic Mach numbers is analyzed using Navier-Stokes equations, without the assumption of an isothermal wall with a prescribed wall temperature. A new criterion is proposed for determining a relevant range of blowing rates, which is useful in the parametric analysis. The wall temperature is found to decrease with the increasing blowing rate, but this effect is not uniform along the plate. The effect is more pronounced away from the leading edge. The relative change in the wall temperature is affected stronger by blowing at high Reynolds numbers. (AIAA)
Resumo:
Let G be an undirected graph with a positive real weight on each edge. It is shown that the number of minimum-weight cycles of G is bounded above by a polynomial in the number of edges of G. A similar bound holds if we wish to count the number of cycles with weight at most a constant multiple of the minimum weight of a cycle of G.