154 resultados para Low-temperature plasma
Resumo:
Potassium doped lanthanum manganites have been synthesized from KCl, KBr and KI fluxes at 900, 850 and 750 °C respectively. While all the flux-grown oxides are ferromagnetic metals (Tc=290–330 K), the oxides grown from KCl and KBr fluxes crystallize in the rhombohedral structure and that synthesized from KI flux adopts the cubic structure. The enhancement in Tc correlates with the increasing tendency of the flux to get oxidized and decreasing melting points of the flux. Nearly stoichiometric (LaK)MnO3 with 33 % of Mn4+ concentration could be prepared at temperature as low as 750 °C. Composition of all the phases have been obtained from the chemical analysis of the elements present.
Resumo:
The growth of strongly oriented or epitaxial thin films of metal oxides generally requires relatively high growth temperatures or infusion of energy to the growth surface through means such as ion bombardment. We have grown high quality epitaxial thin films of Co3O4 on different substrates at a temperature as low as 450°C by low-pressure metal-organic chemical vapor deposition (MOCVD) using cobalt(II) acetylacetonate as the precursor. With oxygen as the reactant gas, polycrystalline Co3O4 films are formed on glass and Si(100) in the temperature range 350-550°C. Under similar conditions of growth, highly oriented films of Co3O4 are formed on SrTiO3(100) and LaAlO3(100). The film on LaAlO3(100) grown at 450°C show a rocking curve FWHM of 1.61°, which reduces to 1.32° when it is annealed in oxygen at 725°C. The film on SrTiO3(100) has a FWHM of 0.330 (as deposited) and 0.29° (after annealing at 725°C). The ø-scan analysis shows cube-on-cube epitaxy on both these substrates. The quality of epitaxy on SrTiO3(100) is comparable to the best of the pervoskite-based oxide thin films grown at significantly higher temperatures.
Resumo:
Using X-ray diffraction data, the behaviour of Kevlar 49 fibres at low temperatures, up to -100degreesC, has been analysed. During cooling, the basal plane of the monoclinic unit cell shrinks whereas the c- (unique, chain axis) length is not significantly affected. In contrast, in the return heating cycle to ambient temperature, the basal plane expands and contraction occurs along the chain direction. The unit cell registers a reduction in volume in both the cooling and heating cycles. Conspicuously, after a cycle of cooling and heating, the unit cell does not return to its initial volume. (C) 2003 Kluwer Academic Publishers.
Resumo:
We report a low-temperature synthesis of La1.95Na0.05NiO4 from NaOH flux, La0.97K0.03NiO3 and La0.95K0.05Ni0.85Cu0.15O3 phases from KOH flux at 400 degreesC. Alkali-doped LaNiO3 can be prepared in KOH, but not in NaOH flux and La2NiO4 can be prepared in NaOH, but not in KOH flux. The flux-grown oxides were characterized by powder X-ray Rietveld profile analysis and electron microscopy. Sodium doped La2NiO4 crystallizes in orthorhombic structure and potassium doped LaNiO3-phases crystallizes in rhombohedral structure. La1.95Na0.05NiO4 is weakly paramagnetic and semiconducting while La0.97K0.03NiO3 and La0.95K0.05Ni0.85Cu0.15O3 show Pauli paramagnetic and metallic behavior. (C) 2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved.
Resumo:
Low-temperature dielectric measurements on FeTiMO(6) (M = Ta,Nb,Sb) rutile-type oxides at frequencies from 0.1 Hz to 10 MHz revealed anomalous dielectric relaxations with frequency dispersion. Unlike the high-temperature relaxor response of these materials, the low-temperature relaxations are polaronic in nature. The relationship between frequency and temperature of dielectric loss peak follows T(-1/4) behavior. The frequency dependence of ac conductivity shows the well-known universal dielectric response, while the dc conductivity follows Mott variable range hopping (VRH) behavior, confirming the polaronic origin of the observed dielectric relaxations. The frequency domain analysis of the dielectric spectra shows evidence for two relaxations, with the high-frequency relaxations following Mott VRH behavior more closely. Significantly, the Cr- and Ga-based analogs, CrTiNbO(6) and GaTiMO(6) (M = Ta,Nb), that were also studied, did not show these anomalies.
Resumo:
Resistance temperature detectors (RTDs) are being widely used to detect low temperature, while thermocouples (TCs) are being used to detect high temperature. The materials suitable for RTDs are platinum, germanium, carbon, carbon-glass, cernox, etc. Here, we have reported the possible application of another form of carbon i.e. carbon nanotubes in low temperature thermometry. It has been shown the resistance R and the sensitivity of carbon nanotube bundles can be tuned and made suitable for ultralow temperature detection. We report on the R-T measurement of carbon nanotube bundles from room temperature down to 1 K to felicitate the possible application of bundles in low temperature RTDs. ©2008 American Institute of Physics
Resumo:
Aggregation in hydroxyacetone (HA) is studied using low-temperature FTIR, supersonic jet expansion, and X-ray crystallographic (in situ cryocrystallization) techniques. Along with quantum chemical methods (MP2 and DFT), the experiments unravel the conformational preferences of HA upon aggregation to dinners and oligomers. The O-H center dot center dot center dot O=C intramolecular hydrogen bond present in the gas-phase monomer partially opens upon aggregation in supersonic expansions, giving rise to intermolecular cooperatively enhanced O-H center dot center dot center dot O-H hydrogen bonds in competition with isolated O-H center dot center dot center dot O=C hydrogen bonds. On the other hand, low-temperature IR studies on the neat solid and X-ray crystallographic data reveal that HA undergoes profound conformational changes upon crystallization, with the HOCC dihedral angle changing from similar to 0 degrees in the gas phase to similar to 180 degrees in the crystalline phase, hence giving rise to a completely new conformation. These conclusions are supported by theoretical calculations performed on the geometry derived from the crystalline phase.
Resumo:
We report a low temperature synthesis of layered Na0×20CoO2 and K0×44CoO2 phases from NaOH and KOH fluxes at 400°C. These layered oxides are employed to prepare hexagonal HCoO2, LixCoO2 and Delafossite AgCoO2 phases by ion exchange method. The resulting oxides were characterised by powder X-ray diffraction, X-ray photoelectron spectroscopy, SEM and EDX analysis. Final compositions of all these oxides are obtained from chemical analysis of elements present. Na0×20CoO2 oxide exhibits insulating to metal like behaviour, whereas AgCoO2 is semiconducting.
Resumo:
We report the shape transformation of ZnO nanorods/nanotubes at temperatures (similar to 700 degrees C) much lower than the bulk melting temperature (1975 degrees C). With increasing annealing temperature, not only does shape transformation take place but the luminescence characteristics of ZnO are also modified. It is proposed that the observed shape transformation is due to surface diffusion, contradicting the previously reported notion of melting and its link to luminescence. Luminescence in the green-to-red region is observed when excited with a blue laser, indicating the conversion of blue to white light.
Resumo:
We report the observed low temperature spin glass like feature in the optimally doped La0.5Sr0.5CoO3 ferromagnetic system. The characteristic of glassy behavior has been identified by noting (i) the frequency-dependent shift of the low temperature hump position in the out of phase ac susceptibility component; (ii) evolution of freezing temperature with dc biasing field that adheres to de Almeida-Thouless relation; (iii) memory effect; and (iv) sluggish magnetic relaxation. The results of magnetic measurements demonstrate that neither the inter-cluster interaction nor the spin disorder at the interface between ferromagnetic clusters is responsible for the manifestation of such collective glassy behavior. Rather, it is believed to arise from a distinct cluster glass like phase that possibly coexists with the dominant ferromagnetic phase. (C) 2012 American Institute of Physics. [doi:10.1063/1.3684610]
Resumo:
Here we study thermodynamic properties of an important class of single-chain magnets (SCMs), where alternate units are isotropic and anisotropic with anisotropy axes being non-collinear. This class of SCMs shows slow relaxation at low temperatures which results from the interplay of two different relaxation mechanisms, namely dynamical and thermal. Here anisotropy is assumed to be large and negative, as a result, anisotropic units behave like canted spins at low temperatures; but even then simple Ising-type model does not capture the essential physics of the system due to quantum mechanical nature of the isotropic units. We here show how statistical behavior of this class of SCMs can be studied using a transfer matrix (TM) method. We also, for the first time, discuss in detail how weak inter-chain interactions can be treated by a TM method. The finite size effect is also discussed which becomes important for low temperature dynamics. At the end of this paper, we apply this technique to study a real helical chain magnet.