91 resultados para Linear Multi-step Formulae
Resumo:
This article presents an experimental approach for evaluating the various flight characteristics of a mahogany seed in its autorotative descent. Analytical formulae proposed by Yasuda and Azuma are used to interpret the results. The findings are used in the development of a sophisticated blade element computational model, primarily to analyse planar autorotating systems. This approximate computational approach is then used to predict the flight performance of mahogany seeds and the results are compared with experimental data. The potential use of the computational model in the design of autorotating systems is then brought to light.
Resumo:
Climate change impact assessment studies involve downscaling large-scale atmospheric predictor variables (LSAPVs) simulated by general circulation models (GCMs) to site-scale meteorological variables. This article presents a least-square support vector machine (LS-SVM)-based methodology for multi-site downscaling of maximum and minimum daily temperature series. The methodology involves (1) delineation of sites in the study area into clusters based on correlation structure of predictands, (2) downscaling LSAPVs to monthly time series of predictands at a representative site identified in each of the clusters, (3) translation of the downscaled information in each cluster from the representative site to that at other sites using LS-SVM inter-site regression relationships, and (4) disaggregation of the information at each site from monthly to daily time scale using k-nearest neighbour disaggregation methodology. Effectiveness of the methodology is demonstrated by application to data pertaining to four sites in the catchment of Beas river basin, India. Simulations of Canadian coupled global climate model (CGCM3.1/T63) for four IPCC SRES scenarios namely A1B, A2, B1 and COMMIT were downscaled to future projections of the predictands in the study area. Comparison of results with those based on recently proposed multivariate multiple linear regression (MMLR) based downscaling method and multi-site multivariate statistical downscaling (MMSD) method indicate that the proposed method is promising and it can be considered as a feasible choice in statistical downscaling studies. The performance of the method in downscaling daily minimum temperature was found to be better when compared with that in downscaling daily maximum temperature. Results indicate an increase in annual average maximum and minimum temperatures at all the sites for A1B, A2 and B1 scenarios. The projected increment is high for A2 scenario, and it is followed by that for A1B, B1 and COMMIT scenarios. Projections, in general, indicated an increase in mean monthly maximum and minimum temperatures during January to February and October to December.
Resumo:
This paper discusses an approach for river mapping and flood evaluation to aid multi-temporal time series analysis of satellite images utilizing pixel spectral information for image classification and region-based segmentation to extract water covered region. Analysis of Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images is applied in two stages: before flood and during flood. For these images the extraction of water region utilizes spectral information for image classification and spatial information for image segmentation. Multi-temporal MODIS images from ``normal'' (non-flood) and flood time-periods are processed in two steps. In the first step, image classifiers such as artificial neural networks and gene expression programming to separate the image pixels into water and non-water groups based on their spectral features. The classified image is then segmented using spatial features of the water pixels to remove the misclassified water region. From the results obtained, we evaluate the performance of the method and conclude that the use of image classification and region-based segmentation is an accurate and reliable for the extraction of water-covered region.
Resumo:
Rod like structures of hexagonal Y(OH)(3):Ni2+ and cubic Y2O3:Ni2+ phosphors have been successfully synthesized by solvothermal method. X-ray diffraction studies of as-formed product shows hexagonal phase, whereas the product heat treated at 700 degrees C shows pure cubic phase. Scanning electron micrographs (SEM) of Y(OH)(3):Ni2+ show hexagonal rods while Y2O3:Ni2+ rods were found to consist of many nanoparticles stacked together forming multi-particle-chains. EPR studies suggest that the site symmetry around Ni2+ ions is predominantly octahedral. PL spectra show emission in blue, green and red regions due to the T-3(1)(P-3)->(3)A(2)(F-3), T-1(2)(D-1)->(3)A(2)(F-3) and T-1(2)(D-1)-> T-3(2)(F-3) transitions of Ni2+ ions, respectively. TL studies were carried out for Y(OH)(3):Ni2+ and Y2O3:Ni2+ phosphor upon gamma-dose for 1-6 kGy. A single well resolved glow peaks at 195 and 230 degrees C were recorded for Y(OH)(3):Ni2+ and Y2O3:Ni2+, respectively. The glow peak intensity increases linearly up to 4 kGy and 5 kGy for Y(OH)(3):Ni2+ and Y2O3:Ni2+, respectively. The kinetic parameters such as activation energy (E), frequency factor (s) and order of kinetics (b) were estimated by different methods. The phosphor follows simple glow peak structure, linear response with gamma dose, low fading and simple trap distribution, suggesting that it is quite suitable for radiation dosimetry. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Hydrodynamic instabilities of the flow field in lean premixed gas turbine combustors can generate velocity perturbations that wrinkle and distort the flame sheet over length scales that are smaller than the flame length. The resultant heat release oscillations can then potentially result in combustion instability. Thus, it is essential to understand the hydrodynamic instability characteristics of the combustor flow field in order to understand its overall influence on combustion instability characteristics. To this end, this paper elucidates the role of fluctuating vorticity production from a linear hydrodynamic stability analysis as the key mechanism promoting absolute/convective instability transitions in shear layers occurring in the flow behind a backward facing step. These results are obtained within the framework of an inviscid, incompressible, local temporal and spatio-temporal stability analysis. Vorticity fluctuations in this limit result from interaction between two competing mechanisms-(1) production from interaction between velocity perturbations and the base flow vorticity gradient and (2) baroclinic torque in the presence of base flow density gradients. This interaction has a significant effect on hydrodynamic instability characteristics when the base flow density and velocity gradients are colocated. Regions in the space of parameters characterizing the base flow velocity profile, i.e., shear layer thickness and ratio of forward to reverse flow velocity, corresponding to convective and absolute instability are identified. The implications of the present results on understanding prior experimental studies of combustion instability in backward facing step combustors and hydrodynamic instability in other flows such as heated jets and bluff body stabilized flames is discussed.
Resumo:
Discrete polymatroids are the multi-set analogue of matroids. In this paper, we explore the connections between linear index coding and representable discrete polymatroids. The index coding problem involves a sender which generates a set of messages X = {x(1), x(2), ... x(k)} and a set of receivers R which demand messages. A receiver R is an element of R is specified by the tuple (x, H) where x. X is the message demanded by R and H subset of X \textbackslash {x} is the side information possessed by R. It is first shown that a linear solution to an index coding problem exists if and only if there exists a representable discrete polymatroid satisfying certain conditions which are determined by the index coding problem considered. El Rouayheb et. al. showed that the problem of finding a multi-linear representation for a matroid can be reduced to finding a perfect linear index coding solution for an index coding problem obtained from that matroid. Multi-linear representation of a matroid can be viewed as a special case of representation of an appropriate discrete polymatroid. We generalize the result of El Rouayheb et. al. by showing that the problem of finding a representation for a discrete polymatroid can be reduced to finding a perfect linear index coding solution for an index coding problem obtained from that discrete polymatroid.
Resumo:
This paper develops a fully coupled time domain Reduced Order Modelling (ROM) approach to model unsteady combustion dynamics in a backward facing step combustor The acoustic field equations are projected onto the canonical acoustic eigenmodes of the systems to obtain a coupled system of modal evolution equations. The heat release response of the flame is modelled using the G-equation approach. Vortical velocity fluctuations that arise due to shear layer rollup downstream of the step are modelled using a simplified 1D-advection equation whose phase speed is determined from a linear, local, temporal stability analysis of the shear layer just downstream of the step. The hydrodynamic stability analysis reveals a abrupt change in the value of disturbance phase speed from unity for Re < Re-crit to 0.5 for Re > Re-crit, where Remit for the present geometry was found to be approximate to 10425. The results for self-excited flame response show highly wrinkled flame shapes that are qualitatively similar to those seen in prior experiments of acoustically forced flames. The effect of constructive and destructive interference between the two contributions to flame surface wrinkling results in high amplitude wrinkles for the case when K-c -> 1.
Resumo:
Let C be a smooth irreducible projective curve of genus g and L a line bundle of degree d generated by a linear subspace V of H-0 (L) of dimension n+1. We prove a conjecture of D. C. Butler on the semistability of the kernel of the evaluation map V circle times O-C -> L and obtain new results on the stability of this kernel. The natural context for this problem is the theory of coherent systems on curves and our techniques involve wall crossing formulae in this theory.
Resumo:
This article presents frequentist inference of accelerated life test data of series systems with independent log-normal component lifetimes. The means of the component log-lifetimes are assumed to depend on the stress variables through a linear stress translation function that can accommodate the standard stress translation functions in the literature. An expectation-maximization algorithm is developed to obtain the maximum likelihood estimates of model parameters. The maximum likelihood estimates are then further refined by bootstrap, which is also used to infer about the component and system reliability metrics at usage stresses. The developed methodology is illustrated by analyzing a real as well as a simulated dataset. A simulation study is also carried out to judge the effectiveness of the bootstrap. It is found that in this model, application of bootstrap results in significant improvement over the simple maximum likelihood estimates.
Resumo:
The Variational Asymptotic Method (VAM) is used for modeling a coupled non-linear electromechanical problem finding applications in aircrafts and Micro Aerial Vehicle (MAV) development. VAM coupled with geometrically exact kinematics forms a powerful tool for analyzing a complex nonlinear phenomena as shown previously by many in the literature 3 - 7] for various challenging problems like modeling of an initially twisted helicopter rotor blades, matrix crack propagation in a composite, modeling of hyper elastic plates and various multi-physics problems. The problem consists of design and analysis of a piezocomposite laminate applied with electrical voltage(s) which can induce direct and planar distributed shear stresses and strains in the structure. The deformations are large and conventional beam theories are inappropriate for the analysis. The behavior of an elastic body is completely understood by its energy. This energy must be integrated over the cross-sectional area to obtain the 1-D behavior as is typical in a beam analysis. VAM can be used efficiently to approximate 3-D strain energy as closely as possible. To perform this simplification, VAM makes use of thickness to width, width to length, width multiplied by initial twist and strain as small parameters embedded in the problem definition and provides a way to approach the exact solution asymptotically. In this work, above mentioned electromechanical problem is modeled using VAM which breaks down the 3-D elasticity problem into two parts, namely a 2-D non-linear cross-sectional analysis and a 1-D non-linear analysis, along the reference curve. The recovery relations obtained as a by-product in the cross-sectional analysis earlier are used to obtain 3-D stresses, displacements and velocity contours. The piezo-composite laminate which is chosen for an initial phase of computational modeling is made up of commercially available Macro Fiber Composites (MFCs) stacked together in an arbitrary lay-up and applied with electrical voltages for actuation. The expressions of sectional forces and moments as obtained from cross-sectional analysis in closed-form show the electro-mechanical coupling and relative contribution of electric field in individual layers of the piezo-composite laminate. The spatial and temporal constitutive law as obtained from the cross-sectional analysis are substituted into 1-D fully intrinsic, geometrically exact equilibrium equations of motion and 1-D intrinsic kinematical equations to solve for all 1-D generalized variables as function of time and an along the reference curve co-ordinate, x(1).
Resumo:
Motivated by multi-distribution divergences, which originate in information theory, we propose a notion of `multipoint' kernels, and study their applications. We study a class of kernels based on Jensen type divergences and show that these can be extended to measure similarity among multiple points. We study tensor flattening methods and develop a multi-point (kernel) spectral clustering (MSC) method. We further emphasize on a special case of the proposed kernels, which is a multi-point extension of the linear (dot-product) kernel and show the existence of cubic time tensor flattening algorithm in this case. Finally, we illustrate the usefulness of our contributions using standard data sets and image segmentation tasks.
Resumo:
Hydrodynamic instabilities of the flow field in lean premixed gas turbine combustors can generate velocity perturbations that wrinkle and distort the flame sheet over length scales that are smaller than the flame length. The resultant heat release oscillations can then potentially result in combustion instability. Thus, it is essential to understand the hydrodynamic instability characteristics of the combustor flow field in order to understand its overall influence on combustion instability characteristics. To this end, this paper elucidates the role of fluctuating vorticity production from a linear hydrodynamic stability analysis as the key mechanism promoting absolute/convective instability transitions in shear layers occurring in the flow behind a backward facing step. These results are obtained within the framework of an inviscid, incompressible, local temporal and spatio-temporal stability analysis. Vorticity fluctuations in this limit result from interaction between two competing mechanisms - (1) production from interaction between velocity perturbations and the base flow vorticity gradient and (2) baroclinic torque in the presence of base flow density gradients. This interaction has a significant effect on hydrodynamic instability characteristics when the base flow density and velocity gradients are co-located. Regions in the space of parameters characterizing the base flow velocity profile, i.e. shear layer thickness and ratio of forward to reverse flow velocity, corresponding to convective and absolute instability are identified. The implications of the present results on prior observations of flow instability in other flows such as heated jets and bluff-body stabilized flames is discussed.
Resumo:
Scaling approaches are widely used by hydrologists for Regional Frequency Analysis (RFA) of floods at ungauged/sparsely gauged site(s) in river basins. This paper proposes a Recursive Multi-scaling (RMS) approach to RFA that overcomes limitations of conventional simple- and multi-scaling approaches. The approach involves identification of a separate set of attributes corresponding to each of the sites (being considered in the study area/region) in a recursive manner according to their importance, and utilizing those attributes to construct effective regional regression relationships to estimate statistical raw moments (SMs) of peak flows. The SMs are then utilized to arrive at parameters of flood frequency distribution and quantile estimate(s) corresponding to target return period(s). Effectiveness of the RMS approach in arriving at flood quantile estimates for ungauged sites is demonstrated through leave-one-out cross-validation experiment on watersheds in Indiana State, USA. Results indicate that the approach outperforms index-flood based Region-of-Influence approach, simple- and multi-scaling approaches and a multiple linear regression method. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Speech polarity detection is a crucial first step in many speech processing techniques. In this paper, an algorithm is proposed that improvises the existing technique using the skewness of the voice source (VS) signal. Here, the integrated linear prediction residual (ILPR) is used as the VS estimate, which is obtained using linear prediction on long-term frames of the low-pass filtered speech signal. This excludes the unvoiced regions from analysis and also reduces the computation. Further, a modified skewness measure is proposed for decision, which also considers the magnitude of the skewness of the ILPR along with its sign. With the detection error rate (DER) as the performance metric, the algorithm is tested on 8 large databases and its performance (DER=0.20%) is found to be comparable to that of the best technique (DER=0.06%) on both clean and noisy speech. Further, the proposed method is found to be ten times faster than the best technique.
Resumo:
Climate change in response to a change in external forcing can be understood in terms of fast response to the imposed forcing and slow feedback associated with surface temperature change. Previous studies have investigated the characteristics of fast response and slow feedback for different forcing agents. Here we examine to what extent that fast response and slow feedback derived from time-mean results of climate model simulations can be used to infer total climate change. To achieve this goal, we develop a multivariate regression model of climate change, in which the change in a climate variable is represented by a linear combination of its sensitivity to CO2 forcing, solar forcing, and change in global mean surface temperature. We derive the parameters of the regression model using time-mean results from a set of HadCM3L climate model step-forcing simulations, and then use the regression model to emulate HadCM3L-simulated transient climate change. Our results show that the regression model emulates well HadCM3L-simulated temporal evolution and spatial distribution of climate change, including surface temperature, precipitation, runoff, soil moisture, cloudiness, and radiative fluxes under transient CO2 and/or solar forcing scenarios. Our findings suggest that temporal and spatial patterns of total change for the climate variables considered here can be represented well by the sum of fast response and slow feedback. Furthermore, by using a simple 1-D heat-diffusion climate model, we show that the temporal and spatial characteristics of climate change under transient forcing scenarios can be emulated well using information from step-forcing simulations alone.