166 resultados para Konrad, Von Hochstaden, abp. of Cologne, d. 1261.
Resumo:
Uniform field steady-state ionization currents were measured in dry air as a function of N at constant E/N (E is the electric field strength and N the gas number density) and constant electrode separation d for 14·13 × 10-16 less-than-or-eq, slant E/N less-than-or-eq, slant 282·5 × 10-16 V cm2. Uniform field sparking potentials were also measured for Nd range 1·24 × 1016 less-than-or-eq, slant Nd less-than-or-eq, slant 245 × 1016 cm-2. The ratio of the Townsend primary ionization coefficient α to N, α/N, was found to depend on E/N only. The secondary coefficients were also evaluated for aluminium and gold-plated electrodes for the above range of E/N. Measurements of the sparking potentials showed that Paschen's law is not obeyed in air at values of Nd near and below the Paschen minimum.
Resumo:
Using Huxley's solution of the diffusion equation for electron-attaching gases, the ratio of diffusion coefficient D to mobility μ for electrons in dry air was measured over the range 3·06 × 10-17
Resumo:
An Arthrobacter species (tentatively identified as A. citreus), isolated by the enrichment culture method with glycerol as the sole source of carbon, was studied with a view to elucidate its pathway of glycerol breakdown. Evidence has been obtained against the functioning of the phosphorylative pathway by the study of (1) oxygen uptake with phosphorylated intermediates, (2) uptake of inorganic phosphorus by intact resting cells, (3) action of inhibitors like sodium fluoride, sodium azide, sodium arsenite, sodium iodoacetate, and parachloromercurybenzoate on oxygen uptake with resting cell suspensions and cell-free extracts in some cases. Evidence presented for the functioning of a non-phosphorylative pathway includes studies on the oxidation of glycerol, D-glyceraldehyde, glycerate, glycolic aldehyde, glycolic acid, glyoxylic acid, and formic acid to carbon dioxide and water. Further, the possibility of glyoxylate metabolism through the tricarboxylic acid cycle by its formation of malate was shown. The significance of the above pathway is that it has pointed to an alternative route of carbohydrate metabolism and entry into the tricaboxylic acid cycle without the intervention of pyruvate or the condensing enzyme.
Resumo:
The stress-optic coefficient (n3/2)(q11-q12) has been determined for a series of 18 optical glasses of different compositions in the wavelength range 5700-3200 Å. The coefficients are negative for all the glasses except for a high-lead-content glass of density 6·7 and refractive index 1·89. The numerical value of the coefficient decreases as one proceeds to the ultraviolet. This behaviour is just the opposite of what is observed in fused silica. By applying Mueller's theory, the strain polarizability constant and its dispersion have been evaluated.
Resumo:
In this paper a mixed-split scheme is proposed in the context of 2-D DPCM based LSF quantization scheme employing split vector product VQ mechanism. Experimental evaluation shows that the new scheme is successfully being able to show better distortion performance than existing safety-net scheme for noisy channel even at considerably lower search complexity, by efficiently exploiting LSF trajectory behavior across the consecutive speech frames.
Resumo:
ingle tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G(7)) quadruplex structures with Na+ or K+ ions coordinated in the cavity formed by the O6 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. There quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 Angstrom from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Nai counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. in the absence of any coordinated ion. due to strong mutual repulsion, O6 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na+ ions, within the quadruplex cavity, are more mobile than coordinated K+ ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures.
Resumo:
We study the properties of Dirac fermions on the surface of a topological insulator in the presence of crossed electric and magnetic fields. We provide an exact solution to this problem and demonstrate that, in contrast to their counterparts in graphene, these Dirac fermions allow relative tuning of the orbital and Zeeman effects of an applied magnetic field by a crossed electric field along the surface. We also elaborate and extend our earlier results on normal-metal-magnetic film-normal metal (NMN) and normal-metal-barrier-magnetic film (NBM) junctions of topological insulators [S. Mondal, D. Sen, K. Sengupta, and R. Shankar, Phys. Rev. Lett. 104, 046403 (2010)]. For NMN junctions, we show that for Dirac fermions with Fermi velocity vF, the transport can be controlled using the exchange field J of a ferromagnetic film over a region of width d. The conductance of such a junction changes from oscillatory to a monotonically decreasing function of d beyond a critical J which leads to the possible realization of magnetic switches using these junctions. For NBM junctions with a potential barrier of width d and potential V-0, we find that beyond a critical J, the criteria of conductance maxima changes from chi=eV(0)d/h upsilon(F)=n pi to chi=(n+1/2)pi for integer n. Finally, we compute the subgap tunneling conductance of a normal-metal-magnetic film-superconductor junctions on the surface of a topological insulator and show that the position of the peaks of the zero-bias tunneling conductance can be tuned using the magnetization of the ferromagnetic film. We point out that these phenomena have no analogs in either conventional two-dimensional materials or Dirac electrons in graphene and suggest experiments to test our theory.
Resumo:
An unusual C-terminal conformation has been detected in a synthetic decapeptide designed to analyze the stereochemistry of helix termination in polypeptides. The crystal structure of the decapeptide Boc-Leu-Aib-Val-Ala-Leu-Aib-Val-(D)Ala-(D)Leu-Aib-OMe reveals a helical segment spanning residues 1-7 and helix termination by formation of a Schellman motif, generated by (D)Ala(8) adopting the left-handed helical (alpha(L)) conformation. The extended conformation at (D)Leu(9) results in a compact folded structure, stabilized by a potentially strong C-H ... O hydrogen bond between Ala(4) (CH)-H-alpha and (D)Leu(9)CO. The parameters for C-H ... O interaction are Ala(4) (CH)-H-alpha .. O=C (D)Leu(9) distance 3.27 Angstrom C-alpha-H .. O angle 176 degrees, and O .. H-alpha distance 2.29 Angstrom. This structure suggests that insertion of contiguous D-residues may provide a handle for the generation of designed structures containing more than one helical segment folded in a compact manner. (C) 2000 Academic Press.
Resumo:
A posteriori error estimation and adaptive refinement technique for fracture analysis of 2-D/3-D crack problems is the state-of-the-art. The objective of the present paper is to propose a new a posteriori error estimator based on strain energy release rate (SERR) or stress intensity factor (SIF) at the crack tip region and to use this along with the stress based error estimator available in the literature for the region away from the crack tip. The proposed a posteriori error estimator is called the K-S error estimator. Further, an adaptive mesh refinement (h-) strategy which can be used with K-S error estimator has been proposed for fracture analysis of 2-D crack problems. The performance of the proposed a posteriori error estimator and the h-adaptive refinement strategy have been demonstrated by employing the 4-noded, 8-noded and 9-noded plane stress finite elements. The proposed error estimator together with the h-adaptive refinement strategy will facilitate automation of fracture analysis process to provide reliable solutions.
Resumo:
Rearrangement of a homobrendane derivative 8a to perhydro-1,4-methanoindenesy stem 9a could be brought about either by p-toluenesulfonic acid or boron trifluoride etherate. Similarly, rearrangement of 8b-d led to the formation of perhydro-1,4-methanoindened erivatives 9b-d. On the basis of the location of substituents in the starting material and the product, a probable mechanistic pathway has been suggested. The appropriate modification of the peripheral functionalities in 9 led to efficient total syntheses of (f)-copacamphor (15a),(f)-ylangocamphor (16a), and their homologues 15b and 16b.
Resumo:
The conformations of Boc-l-Phe-(AiB)3-OH (1) and Boc-l-Phe-(Aib)3-OMe (2) which correspond to the amino terminal sequence of the emerimicins and antiamoebins have been studied in solution using 270 MHz 1H n.m.r. In dimethyl sulphoxide solution both peptides show the presence of two strongly solvent shielded Aib NH groups, consistent with a consecutive β-turn conformation, involving the Aib(3) and Aib(4) NH groups in intramolecular 4 → I hydrogen bonds. This folded conformation is maintained for 2 in chloroform solution. Nuclear Overhauser effect studies provide evidence for a Type II Phe-Aib β-turn. An X-ray diffraction study of Boc-(d,l)-Phe-(Aib)3-OH establishes a single type III(III′) β-turn conformation with Aib(2)-Aib(3) as the corner residues. A single intramolecular 4 → I hydrogen bond between Phe(I) CO and Aib(4) NH groups is observed in the crystal. The solution conformation may incorporate a consecutive type II-III′ structure for the Phe(1)-Aib(2)-Aib(3) segment, with the initial type II β-turn being destabilized by intermolecular interactions in the solid state.
Resumo:
Let n points be placed independently in d-dimensional space according to the density f(x) = A(d)e(-lambda parallel to x parallel to alpha), lambda, alpha > 0, x is an element of R-d, d >= 2. Let d(n) be the longest edge length of the nearest-neighbor graph on these points. We show that (lambda(-1) log n)(1-1/alpha) d(n) - b(n) converges weakly to the Gumbel distribution, where b(n) similar to ((d - 1)/lambda alpha) log log n. We also prove the following strong law for the normalized nearest-neighbor distance (d) over tilde (n) = (lambda(-1) log n)(1-1/alpha) d(n)/log log n: (d - 1)/alpha lambda <= lim inf(n ->infinity) (d) over tilde (n) <= lim sup(n ->infinity) (d) over tilde (n) <= d/alpha lambda almost surely. Thus, the exponential rate of decay alpha = 1 is critical, in the sense that, for alpha > 1, d(n) -> 0, whereas, for alpha <= 1, d(n) -> infinity almost surely as n -> infinity.
Resumo:
Copper strips of 2.5 mm thickness resting on stainless steel anvils were normally indented by wedges under nominal plane strain conditions. Inflections in the hardness-penetration characteristics were identified. Inflections separate stages where each stage has typical mechanics of deformation. These are arrived at by studying the distortion of 0.125 mm spaced grids inscribed on the deformation plane of the strip. The sensitivity of hardness and deformation mechanics to wedge angle and the interfacial friction between strip and anvil were investigated within the framework of existing slip line field models of indentation of semi-infinite and finite blocks.
Resumo:
We present a general method for the synthesis of functional nanoporous structures by heat treating a loose compact of nanorods. Partial sintering of such a compact leads to spherodization of the nanorods and their fusion at the contact regions leading to an interconnected porous microstructure. The pore diameter can be controlled by changing the original nanorod diameter. We illustrate the generality of the method using TiO2, ZnO and hydroxyapatite as model systems; the method is applicable for any material that can be grown in the form of nanorods. The kinetics of the sintering process can be significantly enhanced in systems in which additional driving forces for mass transport arise from phase transitions proving an ultrafast pathway for producing biphasic porous structures. The possibility of producing hierarchical porous structures using fugitive sintering aids makes this process ideal for a variety of applications including catalysis, photoanodes for solar cells and scaffolds for biomedical applications.
Resumo:
We study the dynamical properties of the homogeneous shear flow of inelastic dumbbells in two dimensions as a first step towards examining the effect of shape on the properties of flowing granular materials. The dumbbells are modelled as smooth fused disks characterized by the ratio of the distance between centres (L) and the disk diameter (D), with an aspect ratio (L/D) varying between 0 and 1 in our simulations. Area fractions studied are in the range 0.1-0.7, while coefficients of normal restitution (e(n)) from 0.99 to 0.7 are considered. The simulations use a modified form of the event-driven methodology for circular disks. The average orientation is characterized by an order parameter S, which varies between 0 (for a perfectly disordered fluid) and 1 (for a fluid with the axes of all dumbbells in the same direction). We investigate power-law fits of S as a function of (L D) and (1 - e(n)(2)) There is a gradual increase in ordering as the area fraction is increased, as the aspect ratio is increased or as the coefficient of restitution is decreased. The order parameter has a maximum value of about 0.5 for the highest area fraction and lowest coefficient of restitution considered here. The mean energy of the velocity fluctuations in the flow direction is higher than that in the gradient direction and the rotational energy, though the difference decreases as the area fraction increases, due to the efficient collisional transfer of energy between the three directions. The distributions of the translational and rotational velocities are Gaussian to a very good approximation. The pressure is found to be remarkably independent of the coefficient of restitution. The pressure and dissipation rate show relatively little variation when scaled by the collision frequency for all the area fractions studied here, indicating that the collision frequency determines the momentum transport and energy dissipation, even at the lowest area fractions studied here. The mean angular velocity of the particles is equal to half the vorticity at low area fractions, but the magnitude systematically decreases to less than half the vorticity as the area fraction is increased, even though the stress tensor is symmetric.