233 resultados para K-H unstable wave
Instabilities induced by variation of Brunt-Vaisala frequency in compressible stratified shear flows
Resumo:
The stability characteristics of a Helmholtz velocity profile in a stably stratified, compressible fluid in the presence of a lower rigid boundary are studied. A jump in the Brunt-Vaisala frequency at a level different from the shear zone is introduced and the variation of the Brunt-Vaisala frequency with respect to the vertical coordinate in the middle layer of the three-layered model is considered. An analytic solution in each of the layers is obtained, and the dispersion relation is solved numerically for parameters relevant to the model. The effect of shear in the lowermost layer of the three-layered model for a Boussinesq fluid is discussed. The results are compared with the earlier studies of Lindzen and Rosenthal, and Sachdev and Satya Narayanan. In the present model, new unstable modes with larger growth rates are obtained and the most unstable gravity wave modes are found to agree closely with the observed ones at various heights. Physics of Fluids is copyrighted by The American Institute of Physics.
Resumo:
The dispersion characteristics of Alfven surface waves along a cylindrical plasma column insulated by a neutral gas are discussed. There is no qualitative change in the characteristic curves below the critical magnetic field, given by vA approximately=s, as compared to the propagation of surface waves along the plasma-plasma interface. For magnetic fields above this critical value, there exists a cut-off wave number kc, which depends upon the azimuthal wave number, the radius of the cylinder, the strength of the magnetic field above the critical value and the gas pressure, such that surface waves do not exist for k
Resumo:
The recently introduced generalized pencil of Sudarshan which gives an exact ray picture of wave optics is analysed in some situations of interest to wave optics. A relationship between ray dispersion and statistical inhomogeneity of the field is obtained. A paraxial approximation which preserves the rectilinear propagation character of the generalized pencils is presented. Under this approximation the pencils can be computed directly from the field conditions on a plane, without the necessity to compute the cross-spectral density function in the entire space as an intermediate quantity. The paraxial results are illustrated with examples. The pencils are shown to exhibit an interesting scaling behaviour in the far-zone. This scaling leads to a natural generalization of the Fraunhofer range criterion and of the classical van Cittert-Zernike theorem to planar sources of arbitrary state of coherence. The recently derived results of radiometry with partially coherent sources are shown to be simple consequences of this scaling.
Resumo:
We obtain stringent bounds in the < r(2)>(K pi)(S)-c plane where these are the scalar radius and the curvature parameters of the scalar K pi form factor, respectively, using analyticity and dispersion relation constraints, the knowledge of the form factor from the well-known Callan-Treiman point m(K)(2)-m(pi)(2), as well as at m(pi)(2)-m(K)(2), which we call the second Callan-Treiman point. The central values of these parameters from a recent determination are accomodated in the allowed region provided the higher loop corrections to the value of th form factor at the second Callan-Treiman point reduce the one-loop result by about 3% with F-K/F-pi = 1.21. Such a variation in magnitude at the second Callan-Treiman point yields 0.12 fm(2) less than or similar to < r(2)>(K pi)(S) less than or similar to 0.21 fm(2) and 0.56 GeV-4 less than or similar to c less than or similar to 1.47 GeV-4 and a strong correlation between them. A smaller value of F-K/F-pi shifts both bounds to lower values.
Resumo:
Oxides of the Y-Ba-Cu-O system are found to show onset of superconductivity in the 100–120 K region.
Resumo:
The chemical shifts in the X-ray K-absorption edge of strontium in various compounds and in six minerals are measured using a single crystal X-ray spectrometer. Besides valence, the shifts are found to be governed by ionic charges on the absorbing ions, which are calculated employing Pauling's method. For the minerals the plot of chemical shift against the theoretically calculated ionic charges is used to determine the charges on the strontium ions.
Resumo:
Extensive molecular dynamics (MD) simulations have been performed in a B2-NiAl nanowire using an embedded atom method (EAM) potential. We show a stress induced B2 -> body-centered-tetragonal (BCT) phase transformation and a novel temperature and cross-section dependent pseudo-elastic/pseudo-plastic recovery from such an unstable BCT phase with a recoverable strain of similar to 30% as compared to 5-8% in polycrystalline materials. Such a temperature and cross-section dependent pseudo-elastic/pseudo-plastic strain recovery can be useful in various interesting applications of shape memory and strain sensing in nanoscale devices. Effects of size, temperature, and strain rate on the structural and mechanical properties have also been analyzed in detail. For a given size of the nanowire the yield stress of both the B2 and the BCT phases is found to decrease with increasing temperature, whereas for a given temperature and strain rate the yield stress of both the B2 and the BCT phase is found to increase with increase in the cross-sectional dimensions of the nanowire. A constant elastic modulus of similar to 80 GPa of the B2 phase is observed in the temperature range of 200-500 K for nanowires of cross-sectional dimensions in the range of 17.22-28.712 angstrom, whereas the elastic modulus of the BCT phase shows a decreasing trend with an increase in the temperature.
Resumo:
A monolithic surface acoustic wave (SAW) resonator operating at 156 MHz, in which the frequency controlling element is a Fabry–Perot type of SAW resonator and the gain element is a monolithic SAW amplifier (SiOx/InSb/SiOx structure located inside the SAW resonator cavity) is described and experimental details presented. Based on the existing experimental data, an uhf monolithic ring resonator oscillator is proposed. Journal of Applied Physics is copyrighted by The American Institute of Physics.
Resumo:
The 1122 (n=2) member of the Tl(Ca,Ba)n+1CunO2n+3 series containing a single Tl-O layer is shown to be associated with a Tc of 90 K. This value of Tc is significantly lower than that of the 2122 phase (Tcnot, vert, similar110 K) with two Tl-O layers.
Resumo:
The hydromagnetic Kelvin-Helmholtz (K-H) instability problem is studied for a three-layered system analytically by arriving at the marginal instability condition. As the magnetic field directions are taken to vary in the three regions, both the angle and finite thickness effects are seen on the instability criterion. When the relative flow speed of the plasmas on the two sides of the interfaces separating the inner and the surrounding layers is U < Uc, where Uc is the critical speed, the system is stable both for symmetric and asymmetric perturbations. However, unlike the case of the interface bounded by two semiinfinite media, Uc is no longer the minimum critical speed above which the system will be unstable for all wavenumbers; another critical speed U* > Uc is introduced due to the finiteness of the system. When Uc < U < U*, the instability can set in either through the symmetric or asymmetric mode, depending on the ratio of the plasma parameters and angle between the magnetic field directions across the boundaries. The instability arises for a finite range of wavenumbers, thus giving rise to the upper and lower cut-off frequencies for the spectra of hydromagnetic surface waves generated by the K-H instability mechanism. When U > U*, both the modes are unstable for short wavelengths. The results are finally used to explain some observational features of the dependence of hydromagnetic energy spectra in the magnetosphere on the interplanetary parameters.
Resumo:
The garnet-kyanite-staurolite and garnet-biotite-staurolite gneisses were collected from a locality within Lukung area that belongs to the Pangong metamorphic complex in Shyok valley, Ladakh Himalaya. The kyanite-free samples have garnet and staurolite in equilibrium, where garnets show euhedral texture and have flat compositional profile. On the other hand, the kyanite-bearing sample shows equilibrium assemblage of garnet-kyanite-staurolite along with muscovite and biotite. In this case, garnet has an inclusion rich core with a distinct grain boundary, which was later overgrown by inclusion free euhedral garnet. Garnet cores are rich in Mn and Ca, while the rims are poor in Mn and rich in Fe and Mg, suggesting two distinct generations of growth. However, the compositional profiles and textural signature of garnets suggests the same stage of P -T evolution for the formation of the inclusion free euhedral garnets in the kyanite-free gneisses and the inclusion free euhedral garnet rims in the kyanite-bearing gneiss. Muscovites from the four samples have consistent K-Ar ages, suggesting the cooling age (∼ 10 Ma) of the gneisses. These ages make a constraint on the timing of the youngest post-collision metamorphic event that may be closely related to an activation of the Karakoram fault in Pangong metamorphic complex.
Resumo:
The six independent elastic constants of sodium nitrate are determined using 10 MHz ultrasonic pulse echo superposition technique over the temperature interval 77 to 300 K. The values obtained at 300 K are C11 = 5.71, C12 = 2.16, C33 = 3.3, C13 = 1.66, C44 = 1.24, C14 = 0.82, and at 77 K C11 = 6.63, C12 = 2.07, C33 = 3.99, C13 = 1.67, C44 = 1.69, C14 = 1.16 all expressed in units of 1011 dyn/cm2.
Resumo:
The frequency-dependent response of a pinned charge density wave is considered in terms of forced vibration of an oscillator held in an anharmonic well. It is shown that the effective pinning-frequency can be reduced by applying a d.c. field. If a strong a.c. field, superposed on a d.c. field is applied on such a system “jumps” can be observed in the frequency dependent response of the system. The conditions at which these “jumps” occur are investigated with reference to NbSe3. The possibility of observing such phenomena in other systems like superionic conductors, non-linear dielectrics like ferroelectrics is pointed out. The characteristics are expressed in terms of some “scaled variables” — in terms of which the characteristics show a universal behaviour.
Resumo:
The classical problem of surface water-wave scattering by two identical thin vertical barriers submerged in deep water and extending infinitely downwards from the same depth below the mean free surface, is reinvestigated here by an approach leading to the problem of solving a system of Abel integral equations. The reflection and transmission coefficients are obtained in terms of computable integrals. Known results for a single barrier are recovered as a limiting case as the separation distance between the two barriers tends to zero. The coefficients are depicted graphically in a number of figures which are identical with the corresponding figures given by Jarvis (J Inst Math Appl 7:207-215, 1971) who employed a completely different approach involving a Schwarz-Christoffel transformation of complex-variable theory to solve the problem.
Resumo:
Single crystals of K, Rb and Cs perchlorates have been grown by the counter diffusion of the respective ions and CIO4 through the gel medium. Studies on nucleation, growth kinetics, morphological aspects and purity are discussed in this paper. The dielectric constant, ~b, as well as loss measured along the longest axis, exhibits an anomaly at the transition temperature, Tt, in all the three crystals. It is found that the peak values of Tt are approximately 800, 100 and 53 in K, Rb and Cs perchlorates, respectively. The dielectric anomaly and the large value of c b in the cubic phase are discussed in terms of the degree of disorder of the CIO~ group and the possible contribution from defects.