102 resultados para Irradiated riboflavin
Resumo:
As deposited amorphous and crystallized thin films of Ti 37.5% Si alloy deposited by pulsed laser ablation technique were irradiated with 100 keV Xe(+) ion beam to an ion fluence of about 10(16) ions-cm(-2). Transmission electron microscopy revealed that the implanted Xe formed amorphous nanosized clusters in both cases. The Xe ion-irradiation favors nucleation of a fcc-Ti(Si) phase in amorphous films. However, in crystalline films, irradiation leads to dissolution of the Ti(5)Si(3) intermetallic phase. In both cases, Xe irradiation leads to the evolution of similar microstructures. Our results point to the pivotal role of nucleation in the evolution of the microstructure under the condition of ion implantation.
Resumo:
As deposited amorphous and crystallized thin films of Ti 37.5% Si alloy deposited by pulsed laser ablation technique were irradiated with 100 keV Xe+ ion beam to an ion fluence of about 1016 ions-cm−2. Transmission electron microscopy revealed that the implanted Xe formed amorphous nanosized clusters in both cases. The Xe ion-irradiation favors nucleation of a fcc-Ti(Si) phase in amorphous films. However, in crystalline films, irradiation leads to dissolution of the Ti5Si3 intermetallic phase. In both cases, Xe irradiation leads to the evolution of similar microstructures. Our results point to the pivotal role of nucleation in the evolution of the microstructure under the condition of ion implantation.
Resumo:
The ferroelectric Pb(Zr0.53Ti0.47)O-3 (PZT) and SrBi2Ta2O9 (SBT) thin films were prepared by laser ablation technique. The dielectric analysis, capacitance-voltage, ferroelectric hysteresis and DC leakage current measurements were performed before and after 50 MeV Li3+ ion irradiation. In both thin films, the irradiation produced some amount of amorphisation, considerable degradation in the ferroelectric properties and change in DC conductivity. On irradiation of these thin films, the phase transition temperature [T-c] of PZT decreased considerably from 628 to 508 K, while SBT exhibited a broad and diffuse transition with its T-c decreased from 573 to 548 K. The capacitance-voltage curve at 100 kHz showed a double butterfly loop with a large decrease in the capacitance and switching voltage. There was decrease in the ferroelectric hysteresis loop, remanant polarisation and coercive field. After annealing at a temperature of 673 K for 10 min while PZT partially regained the ferroelectric properties, while SBT did not. The DC conductivity measurements showed a shift in the onset of non-linear conduction region in irradiated SBT. The degradation of ferroelectric properties of the irradiated thin films is attributed to the irradiation-induced partial amorphization and the pinning of the ferroelectric domains by trapped charges. The regaining of properties after annealing is attributed to the thermal annealing of the defects generated during the irradiation. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Flavokinase was purified, for the first time from a plant source [mung bean (Phaseolus aureus)] by affinity chromatography in the presence of orthophosphate and by using C-8 ATP-agarose (ATP linked through the C-8 position to beaded agarose), Cibacron Blue and riboflavin--Sepharoses. An altered substrates-saturation pattern was observed in the presence of K2HPO4. The conformational changes of the enzyme in the presence of K2HPO4 were monitored by fluorescence spectroscopy. These results highlight the regulatory nature of this enzyme.
Resumo:
The effect of 4.0 MeV proton irradiation on the microstructure and mechanical properties of nanocrystalline (nc) nickel was investigated. The irradiation damage induced in the sample was of the order of 0.004 dpa. Transmission electron microscopy of irradiated samples indicated the presence of dislocation loops within the grains. An increase in hardness and strain-rate sensitivity (m) of nc-Ni with irradiation was noted. The rate-controlling deformation mechanism in irradiated nc-Ni was identified to be interaction of dislocations with irradiation-induced defects. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
We report the observation of giant photo induced optical bleaching in Sb/As(2)S(3) multilayered film at room and liquid He temperatures, when irradiated with 532 nm laser at moderate intensities. The experimental results show a dramatic increase in transmittance near the band gap regime at both the temperatures; however the rates at which transmission change occurs are rather slow at low temperature. The huge change in transmission is due to the photo induced intermixing of As(2)S(3) layer with Sb. Our XPS measurements show that photo induced intermixing occurs through the wrong homopolar bonds, which under actinic light illumination are converted into energetically favored hetropolar bonds. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Bilayer thin films of Te/As(2)S(3) were prepared from Te and As(2)S(3) by thermal technique under high vacuum. Optical constants were calculated by analysing the transmission spectrum in the spectral range 400-1100 nm. The optical band gap decreases with the addition of Te to As(2)S(3). The decrease of optical band gap has been explained on the basis of density of states and the increase in disorder in the system. We have irradiated the as-deposited films using a diode pumped solid state laser of 532 nm wavelength to study photo-diffusion of Te into As(2)S(3). The changes were characterised by Fourier Transform Infrared and X-ray Photoelectron Spectroscopy (XPS). The optical band gap is found to be decreased with the light irradiation which is proposed due to homopolar bond formation. The core level peaks in XPS spectra give information about different bond formation. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Nanocrystalline ZnO powders have been synthesized by a low temperature solution combustion method. The photoluminescence (PL) spectrum of as-formed and heat treated ZnO shows strong violet (402, 421, 437, 485 nm) and weak green (520 nm) emission peaks respectively. The PL intensities of defect related emission bands decrease with calcinations temperature indicating the decrease of Zn(i) and V(o)(+) caused by the chemisorptions of oxygen. The results are correlated with the electron paramagnetic resonance (EPR) studies. Thermoluminescence (TL) glow curves of gamma irradiated ZnO nanoparticles exhibit a single broad glow peak at similar to 343 degrees C. This can be attributed to the recombination of charge carriers released from the surface states associated with oxygen defects, mainly interstitial oxygen ion centers. The trapping parameters of ZnO irradiated with various gamma-doses are calculated using peak shape method. It is observed that the glow peak intensity increases with increase of gamma dose without changing glow curve shape. These two characteristic properties such as TL intensity increases with gamma dose and simple glow curve structure is an indication that the synthesized ZnO nanoparticles might be used as good TL dosimeter for high temperature application. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Potassium titanyl phosphate single crystals were irradiated with 48 MeV lithium ions at fluences varying from 5×1012 to 1016 ions/cm2. The defects created in the crystal have been characterized using x-ray rocking curve measurements, optical transmittance, and photoluminescence spectroscopy. From x-ray rocking curve studies, the full width at half maximum for the irradiated samples was observed to increase, indicating lattice strain caused by the energetic ions. Optical transparency of these samples was found to decrease upon irradiation. The irradiated samples exhibited a broadband luminescence in the 700–900 nm region, for fluences above 5×1013 ions/cm2. The results indicate that ion-beam-induced optical effects in KTiOPO4 single crystals are very similar to the ones obtained for crystals with “gray tracks,” which are attributed to the electronic transitions in the Ti3+ levels.
Resumo:
Optical parameters of chalcogenide glass multilayers with 12–15 nm modulation lengths prepared by thermal evaporation can be changed by laser irradiation. Photoluminescence (PL) studies were carried out on such nonirradiated and irradiated multilayered samples of a-Se/As2S3 (sublayer thickness of a-Se is 4–5 nm for one set of samples and 1–2 nm for the other set. However As2S3 sublayer thickness is 11–12 nm for both sets of samples.) PL intensity can be increased by several orders of magnitude by reducing the Se well layer (lower band gap) thickness and can be further increased by irradiating the samples with appropriate wavelengths in the range of the absorption edge. The broadening of luminescence bands takes place either with a decrease in Se layer thickness or with irradiation. The former is due to the change in interface roughness and defects because of the enhanced structural disorder while the latter is due to photoinduced interdiffusion. The photoinduced interdiffusion creates defects at the interface between Se and As2S3 by forming an As–Se–S solid solution. From the deconvoluted PL spectrum, it is shown that the peak PL intensity, full width half maximum, and the PL quantum efficiency of particular defects giving rise to PL, can be tuned by changing the sublayer thickness or by interdiffusion.
Resumo:
The nanocrystallites ( ≈ 3 nm) of LiNbO3, evolved in the (100−x)LiBO2-xNb2O5 (5x20, in molar ratio) glass system exhibited intense second-harmonic signals in transmission mode when exposed to infrared (IR) light at λ = 1064 nm. The second-harmonic waves were found to undergo optical diffraction which was attributed to the presence of self-organized submicrometer-sized LiNbO3 crystallites that were grown within the glass matrix along the parallel damage fringes created by the IR laser radiation. Micro-Raman studies carried out on the laser-irradiated samples confirmed the self-organized crystallites to be LiNbO3.
Resumo:
Degradation of dimethoate under UV irradiation using TiO2/polymer films prepared by the layer-by-layer (LbL) method was investigated. The thin films were fabricated on glass slides and the surface morphology and roughness of the thin films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The effect of lamp intensity, catalyst loading in the layers, number of bilayers, pH and initial dimethoate concentration on the degradation of dimethoate was systematically studied. The degradation was monitored using high performance liquid chromatography (HPLC) analysis and total organic carbon (TOC) measurements as a function of irradiation time, to see the change in concentration of dimethoate and mineralization, respectively. Complete degradation of dimethoate was achieved under TiO2 optimum loading of 4 g/L at an UV irradiation time of 180 min. Increase in the lamp intensity, catalyst loading and number of bilayers increased the rate of degradation. At a pH of 4.62, complete degradation of dimethoate was observed. The degradation efficiency decreased with increase in initial dimethoate concentration. The degradation byproducts were analyzed and confirmed by gas chromatography-mass spectra (GC-MS). Toxicity of the irradiated samples was measured using the luminescence of bacteria Vibrio fischeri after 30 min of incubation and the results showed more toxicity than the parent compound. Catalyst reusability studies revealed that the fabricated thin films could be repeatedly used for up to ten times without affecting the photocatalytic activity of the films. The findings of the present study are very useful for the treatment of wastewaters contaminated with pesticides. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Zn(1-x)Fe(x)O(1+0.5x) (x = 0.5-5 mol%) nanoparticles were synthesized by a low temperature solution combustion route. The structural characterization of these nanoparticles by PXRD, SEM and TEM confirmed the phase purity of the samples and indicated a reduction in the particle size with increase in Fe content. A small increase in micro strain in the Fe doped nanocrystals is observed from W-H plots. EPR spectrum exhibits an intense resonance signal with effective g values at g approximate to 2.0 with a sextet hyperfine structure (hfs) besides a weak signal at g approximate to 4.13. The signal at g approximate to 2.0 with a sextet hyperfine structure might be due to manganese impurity where as the resonance signal at g approximate to 4.13 is due to iron. The optical band gap E-g was found to decrease with increase of Fe content. Raman spectra exhibit two non-polar optical phonon (E-2) modes at low and high frequencies at 100 and 435 cm(-1) in Fe doped samples. These modes broaden and disappear with increase of Fe do pant concentration. TL measurements of gamma-irradiated (1-5 kGy) samples show a main glow peak at 368 degrees C at a warming rate of 6.7 degrees Cs-1. The thermal activation parameters were estimated from Glow peak shape method. The average activation energy was found to be in the range 0.34-2.81 eV. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
CaSiO3:Dy3+ (1-5 mol%) nanophosphors have been prepared by a low temperature solution combustion method. The structural and luminescence (ionoluminescence; IL and photoluminescence; PL) studies have been carried out for pristine and ion irradiated samples. The XRD patterns of pristine sample show a prominent peak at (320) for the monoclinic structure of beta-CaSiO3. Upon ion irradiation, the intensity of the prominent peak is decreased at the fluence of 7.81 x 10(12) ions cm(-2) and at higher fluence of 15.62 x 10(12) ions cm(-2), the prominent peak completely vanishes. The decrease in peak intensity might be due to the stress induced point defects. On-line IL and in situ PL studies have been carried out on pelletized samples bombarded with 100 MeV Si7+ ions with fluences in the range (7.81-15.62) x 10(12) ions cm(-2). The characteristic emission peaks at 481,574, 664 and 754 nm recorded in both IL and PL are attributed to the luminescence centers activated by Dy3+ ions. It is found that IL and PL emissions intensity decreases with increase in Si7+ ion fluence. The decrease in intensity can be due to the destruction of Si-O-Si and O-Si-O type species present on the surface of the sample. FTIR studies also confirm the Si-O-Si and O-Si-O type species observed to be sensitive for swift heavy ion (SHI) irradiated samples. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A simple, rapid, and surfactant-free synthesis of crystalline copper nanostructures has been carried out through microwave irradiation of a solution of copper acetylacetonate in benzyl alcohol. The structures are found to be stable against oxidation in ambient air for several months. High-resolution electron microscopy (SEM and TEM) reveals that the copper samples comprise nanospheres measuring about 150 nm in diameter, each made of copper nanocrystals similar to 7 nm in extension. The nanocrystals are densely packed into spherical aggregates, the driving force being minimization of surface area and surface energy, and are thus immune to oxidation in ambient air. Such aggregates can also be adherently supported on SiO2 and Al2O3 when these substrates are immersed in the irradiated solution. The air-stable copper nanostructures exhibit surface enhanced Raman scattering, as evidenced by the detection of 4-mercaptobenzoic acid at 10(-6) M concentrations.