165 resultados para IT-system
Resumo:
The phase relations in the system Cu-Gd-O have been determined at 1273 K by X-ray diffrac- tion, optical microscopy, and electron microprobe analysis of samples equilibrated in quartz ampules and in pure oxygen. Only one ternary compound, CuGd2O4, was found to be stable. The Gibbs free energy of formation of this compound has been measured using the solid-state cell Pt, Cu2O + CuGd2O4 + Gd2O3 // (Y2O3) ZrO2 // CuO + Cu2O, Pt in the temperature range of 900 to 1350 K. For the formation of CuGd2O4 from its binary component oxides, CuO (s) + Gd2O3 (s) → CuGd2O4 (s) ΔG° = 8230 - 11.2T (±50) J mol-1 Since the formation is endothermic, CuGd2O4 becomes thermodynamically unstable with respect to CuO and Gd2O3 below 735 K. When the oxygen partial pressure over CuGd2O4 is lowered, it decomposes according to the reaction 4CuGd2O4 (s) → 4Gd2O3 (s) + 2Cu2O (s) + O2 (g) for which the equilibrium oxygen potential is given by Δμo 2 = −227,970 + 143.2T (±500) J mol−1 An oxygen potential diagram for the system Cu-Gd-O at 1273 K is presented.
Resumo:
Time-domain-finite-wave analysis of the engine exhaust system is usually done using the method of characteristics. This makes use of either the moving frame method, or the stationary frame method. The stationary frame method is more convenient than its counterpart inasmuch as it avoids the tedium of graphical computations. In this paper (part I), the stationary-frame computational scheme along with the boundary conditions has been implemented. The analysis of a uniform tube, cavity-pipe junction including the engine and the radiation ends, and also the simple area discontinuities has been presented. The analysis has been done accounting for wall friction and heat-transfer for a one-dimensional unsteady flow. In the process, a few inconsistencies in the formulations reported in the literature have been pointed out and corrected. In the accompanying paper (part II) results obtained from the simulation are shown to be in good agreement with the experimental observations.
Resumo:
A new throttling system far SI engines is examined. The SMD of the fuel droplets in the induction system is measured to evaluate the performance of the new device with respect to the conventional throttle plate arrangement. The measurements are conducted at steady now conditions. A forward angular scattering technique with a He-Ne laser beam is used for droplet size measurement. The experiments are carried out with different mixture strength, stream velocity and throttle positions. It is observed that A/F ratio has no effect on SMD. However, stream velocity and throttle position have a significant influence on SMD. The new throttling method is found to be more effective in reducing the SMD, particularly at low throttle opening and high stream velocity compared to the conventional throttle plate.
Resumo:
Potassium disilicate glass and melt have been investigated by using a new partial charge based potential model in which nonbridging oxygens are differentiated from bridging oxygens by their charges. The model reproduces the structural data pertaining to the coordination polyhedra around potassium and the various bond angle distributions excellently. The dynamics of the glass has been studied by using space and time correlation functions. It is found that K ions migrate by a diffusive mechanism in the melt and by hops below the glass transition temperature. They are also found to migrate largely through nonbridging oxygenrich sites in the silicate matrix, thus providing support to the predictions of the modified random network model.
Resumo:
Potassium disilicate glass and melt have been investigated by using anew partial charge based potential model in which nonbridging oxygens are differentiated from bridging oxygens by their charges. The model reproduces the structural data pertaining to the coordination polyhedra around potassium and the various bond angle distributions excellently. The dynamics of the glass has been studied by using space and time correlation functions. It is found that K ions migrate by a diffusive mechanism in the melt and by hops below the glass transition temperature. They are also found to migrate largely through nonbridging oxygen-rich sites in the silicate matrix, thus providing support to the predictions of the modified random network model.
Resumo:
The phase relations in the system Cu-Ho-O have been determined at 1300 K using X-ray diffraction, optical microscopy, and electron microprobe analysis of samples equilibrated in evacuated quartz ampules and in pure oxygen. Only one ternary compound, Cu2Ho2O5, was found to be stable. The Gibbs free energy of formation of this compound has been measured using the solid-state cell Pt,Cu2O + Cu2Ho2O5 + Ho2O3/(Y2O3)ZrO2/CuO + Cu2O,Pt in the temperature range of 973 to 1350 K. For the formation of Cu2Ho2O5 from its binary component oxides, 2CuO(s) + Ho2O3(S) --> Cu2Ho2O5(s) DELTAG-degrees = 11190 - 13.8T(+/- 120) J-mol-1 Since the formation is endothermic, CU2Ho2O5 becomes thermodynamically unstable with respect to CuO and Ho2O3 below 810 K. When the oxygen partial pressure over Cu2Ho2O5 is lowered, it decomposes according to the reaction 2Cu2Ho2O5(s) --> 2Ho2O3(s) + 2Cu2O(S) + O2(g) for which the equilibrium oxygen potential is given by DELTAmu(O2) = - 238510 + 160.2T(+/- 450) J.mol-1 The decomposition temperature at an oxygen partial pressure of 1.52 x 10(4) Pa was measured using a combined DTA-TGA apparatus. Based on these results, an oxygen potential diagram for the system Cu-Ho-O at 1300 K is presented.
Resumo:
Application of differential geometry to study the dynamics of electrical machines by Gabriel Kron evoked only theoretical interest among the power system engineers and was considered hardly suitable for any practical use. Extension of Kron's work led to a physical understanding of the processes governing the small oscillation instability in power system. This in turn has made it possible to design a self-tuning Power System Stabilizer to contain the oscillatory instability over arm extended range of system and operating conditions. This paper briefly recounts the history of this development and touches upon the essential design features of the stabilizer. It presents some results from simulation studies, laboratory experiments and recently conducted field trials at actual plants-all of which help to establish the efficacy of the proposed stabilizer and corroborate the theoretical findings.
Resumo:
A new linear algebraic approach for identification of a nonminimum phase FIR system of known order using only higher order (>2) cumulants of the output process is proposed. It is first shown that a matrix formed from a set of cumulants of arbitrary order can be expressed as a product of structured matrices. The subspaces of this matrix are then used to obtain the parameters of the FIR system using a set of linear equations. Theoretical analysis and numerical simulation studies are presented to characterize the performance of the proposed methods.
Resumo:
The problem of quantification of intelligence of humans, and of intelligent systems, has been a challenging and controversial topic. IQ tests have been traditionally used to quantify human intelligence based on results of test designed by psychologists. It is in general very difficult to quantify intelligence. In this paper the authors consider a simple question-answering (Q-A) system and use this to quantify intelligence. The authors quantify intelligence as a vector with three components. The components consist of a measure of knowledge in asking questions, effectiveness of questions asked, and correctness of deduction. The authors formalize these parameters and have conducted experiments on humans to measure these parameters
Resumo:
It has recently been proposed that the broad spectrum of interannual variability in the tropics with a peak around four years results from an interaction between the linear low-frequency oscillatory mode of the coupled system and the nonlinear higher-frequency modes of the system. In this study we determine the bispectrum of the conceptual model consisting of a nonlinear low-order model coupled to a linear oscillator for various values of the coupling constants.
Resumo:
An escape mechanism in a bistable system driven by colored noise of large but finite correlation time (tau) is analyzed. It is shown that the fluctuating potential theory [Phys. Rev. A 38, 3749 (1988)] becomes invalid in a region around the inflection points of the bistable potential, resulting in the underestimation of the mean first passage time at finite tau by this theory. It is shown that transitions at large but finite tau are caused by noise spikes, with edges rising and falling exponentially in a time of O(tau). Simulation of the dynamics of the bistable system driven by noise spikes of the above-mentioned nature clearly reveal the physical mechanism behind the transition.
Resumo:
Using the density-matrix renormalization-group technique, we study the ground-state phase diagram and other low-energy properties of an isotropic antiferromagnetic spin-1/2 chain with both dimerization and frustration, i.e., an alternation delta of the nearest-neighbor exchanges and a next-nearest-neighbor exchange J(2). For delta = 0, the system is gapless for J(2) < J(2c) and has a gap for J(2) > J(2c) where J(2c) is about 0.241. For J(2) = J(2c) the gap above the ground state grows as delta to the power 0.667 +/- 0.001. In the J(2)-delta plane, there is a disorder line 2J(2) + delta = 1. To the left of this line, the peak in the static structure factor S(q) is at q(max) = pi (Neel phase), while to the right of the line, q(max) decreases from pi to pi/2 as J(2) is increased to large values (spiral phase). For delta = 1, the system is equivalent to two coupled chains as on a ladder and it is gapped for all values of the interchain coupling.
Resumo:
The microstructural changes of Al-22 wt%U and Al-46 wt%U alloys containing 3 wt% Zr were investigated after heat treatment at 620 degrees C for 1 to 45 days, Though it is reported that addition of similar to 3 wt% Zr stabilizes the (U,Zr)Al-3 phase at room temperature, the present investigation shows that the (U,Zr)Al-3 phase is not stable but slowly transforms to the U0.9Al4 phase, The high temperature creep curves generated for these ternary alloys showed a wavy pattern which also suggests that the (U,Zr)Al-3 phase is not stable.
Resumo:
A solid-state miscibility gap in the pseudo-binary system BaO-SrO is delineated by X-ray diffraction studies on samples equilibrated either in vacuum or under flowing inert gas at temperatures between 1073 and 1423 K. For the SrxBa1-xO solid solution an asymmetric phase boundary, characterized by a critical temperature of 1356 (+/-4) K and composition x=0.55 (+/-0.008), is obtained. Thermodynamic mixing properties of the solid solution, derived from the experimental phase boundary compositions and temperatures, can be represented by the expression: Delta G(E)=x(1-x){33 390-7.09T)x+(29 340-6.23T)(1-x)} J mol(-1)It is necessary to include excess entropy terms to obtain a good fit to the experimental data. The chemical spinodal curve is computed from the thermodynamic parameters
Resumo:
This paper critically appraises the limitations of the liquid-limit water content of clayey soils determined conventionally either by percussion cup or by the cone penetration method. It is shown that the conventional liquid limit and plastic limit are arbitrary, strength-based water contents and that they cannot represent the plasticity limits, and that the state of the soil-water system at the conventional liquid limit does not correspond to a stress-free reference state. The present investigation identifies three characteristic limiting water contents for a soil-water system which have well-defined, unique mechanisms controlling them, namely the free swell limit, settling limit and shrinkage limit. Simple procedures for the determination of the free swell limit and settling limit of natural soils are presented. The settling limit is shown to be the 'real liquid limit' of any clayey soil. With a number of experimental illustrations, it is clearly shown that the settling limit represents the maximum water-holding capacity of clayey soils and that it corresponds to the stress-free reference state.