228 resultados para Hydrogen bonding.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A comparison with the alkali halides suggests that all the ammonium halides should occur in the NaCl centre-of-mass structure. Experimentally, at room temperature and atmospheric pressure, only NH,1 crystallizes in this structure, while NH,F is found in the ZnO structure, and NH&I and NH,Br occur in the CsCl structure. We show that a distributed charge on the NH,+ ion can explain these structures. Taking charges of + 0.2e on each of the five atoms in NH,+, as suggested by other studies, we have recomputed the Madelung energy in the cases of interest. A full ionic theory including electrostatic, van der Waals and repulsive interactions then explains the centre-of-mass structures of all the four ammonium halides. The thermal and pressure transitions are also explained reasonably well. The calculated phase diagram of NH,F compares well with experiment. Barring the poorly understood NH,F(II) phase, which is beyond the scope of this work, the other features are in qualitative agreement. In particular, the theory correctly predicts a pressure transition at room temperature from the ZnO structure directly to the CsCl structure without an intermediate NaCl phase. A feature of our approach is that we do not need to invoke hydrogen bonding in NH,F.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several N,N-²-arylalkyl thioureas were examined with 1H-NMR and i.r. spectra in order to study the conformation of the -NHCSNH- group. The influence of temperature and substituents on the chemical shift of the N---H protons has been investigated. Formation of a strong intramolecular hydrogen bond stabilizes the trans-cis conformation for most systems, while for the others the prevalence of different rotational isomers can be postulated. The influence of the steric effect on hydrogen bonding and molecular conformation is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New supramolecular organogels based on all-trans-tri(p-phenylenevinylene) (TPV) systems possessing different terminal groups, e.g., oxime, hydrazone, phenylhydrazone, and semicarbazone have been synthesized. The self-assembly properties of the compounds that gelate in specific organic solvents and the aggregation motifs of these molecules in the organogels were investigated using UV−vis, fluorescence, FT-IR, and 1H NMR spectroscopy, electron microscopy, differential scanning calorimetry (DSC), and rheology. The temperature variable UV−vis and fluorescence spectroscopy in different solvents clearly show the aggregation pattern of the self-assemblies promoted by hydrogen bonding, aromatic π-stacking, and van der Waals interactions among the individual TPV units. Gelation could be controlled by variation in the number of hydrogen-bonding donors and acceptors in the terminal functional groups of this class of gelators. Also wherever gelation is observed, the individual fibers in gels change to other types of networks in their aggregates depending on the number of hydrogen-bonding sites in the terminal functions. Comparison of the thermal stability of the gels obtained from DSC data of different gelators demonstrates higher phase transition temperature and enthalpy for the hydrazone-based gelator. Rheological studies indicate that the presence of more hydrogen-bonding donors in the periphery of the gelator molecules makes the gel more viscoelastic solidlike. However, in the presence of more numbers of hydrogen-bonding donor/acceptors at the periphery of TPVs such as with semicarbazone a precipitation as opposed to gelation was observed. Clearly, the choice of the end functional groups and the number of hydrogen-bonding groups in the TPV backbone holds the key and modulates the effective length of the chromophore, resulting in interesting optical properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The temperature variation of the 3’Cl n.q.r. frequencies in 3,5- and 2,3- dichloroanisoles has been reported here. Both compounds show two lines each, and these have been assigned to the two chlorines in the same molecule with the help of the additive model for the substituent effect. The temperature dependence has been analysed in terms of Bayer-Kushida-Brown model.The torsional frequencies and their temperature dependence have been calculated numerically under a two-mode approximation. 0.n comparing the results in 3,5-dichloroanisole with those in 3,5-dichlorophenol it can be seen that they show similar behaviour owing to the absence of hydrogen bonding in both.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A method to identify β-sheets in globular proteins from extended strands, using only α-carbon positions, has been developed. The strands that form β-sheets are picked up by means of simple distance criteria. The method has been tested by applying it to three proteins with accurately known secondary structures. It has also been applied to ten other proteins wherein only α-carbon coordinates are available, and the list of β-sheets obtained. The following points are worth noting: (i) The sheets identified by the algorithm are found to agree satisfactorily with the reported ones based on backbone hydrogen bonding, wherever this information is available. (ii) β-Strands that do not form parts of any sheet are a common feature of protein structures. (iii) Such isolated β-strands tend to be short. (iv) The conformation corresponding to the preferred right-handed twist of the sheet is overwhelmingly observed in both the sheet-forming and isolated β-strands.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Linalool-8-monoxygenase, a typical bacterial P-450 heme thiolase, shows a high degree of substrate specificity towards linalool. The active site of the pure enzyme has been probed with a large number of substrate analogues with systematic alterations or conformational variations in the linalool molecule. The comparison of three parameters, the mo→mos conversion of the enzyme as a result of substrate binding monitored at 392 nm, theK D of the analogues giving information about energies of association and the relative turnover as substrate have given information about the space-filling characteristics of the substrates in the enzyme cleft, the number of contacts the molecules make with the respective domains of the enzyme and the distance of the site undergoing hydroxylation from the oxygen site, respectively. The data permit the conclusion that linalool makes contact with the enzyme by hydrogen bonding with the hydroxyl group as well through hydrophobic association with all the eight carbons carrying hydrogen in the molecules.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three distinct coordination complexes, viz., [Co(imi)(2)(tmb)(2)] (1) [where imi = imidazole], {[Ni(tmb)(2)(H2O)(3)]center dot 2H(2)O}(n) (2) and [Cu-2(mu-tmb)(4)(CH3OH)(2)] (3), have been synthesized hydrothermally by the reactions of metal acetates,2,4,6-trimethylbenzoic acid (Htmb) and with or without appropriate amine. The Ni analogue of 1 and the Co analogue of 2 have also been synthesized. X-ray single-crystal diffraction suggests that complex 1 represents discrete mononuclear species and complex 2 represents a 1D chain coordination polymer in which the Ni(H) ions are connected by the bridging water molecules. Complex 3 represents a neutral dinuclear complex. In 1, the central metal ions are associated by the carboxylate moiety and imidazole ligands, whereas the central metal atom is coordinated to the carboxylate moiety and the respective solvent molecules in 2 and 3. In 3, the four 2,4,6-trimethylbenzoate moieties act as a bridge connecting two copper (11) ions and the 0 atoms of methanol coord geometry, with the methanol molecule at the apical position. In all the three structures the central metal atom sits on a crystallographic inversion centre. In all the cases, the coordination entities are further organized via hydrogen bonding interactions to generate multifarious supramolecular networks. Complexes 1, 2 and 3 have also been characterized by spectroscopic (UV/Vis and IR) and thermal analysis (TGA). In addition, the complexes were found to exhibit antimicrobial activity. The magnetic susceptibility measurements, measured from 8 to 300 K, revealed antiferromagnetic interactions between the Co(II) ions in compound 1 and the Ni(II) ions in la, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The crystal structure of the cobalt( 11) complex with 2'-deoxyinosine 5'-monophosphate (5'- dlMP), [Co(5'-dlMP) (H,0),]-2H20, has been analysed by X-ray diffraction. The complex crystallizes in the space group P2,2,2, with a = 6.877(3), b = 10.904(2), c = 25.421 (6) A, and Z = 4. The structure was solved by the heavy-atom method and refined to an R value of 0.043 using 1 776 unique reflections. The cobalt ion binds only to the 6-oxopurine base of the nucleotide at the N(7) position, the octahedral co-ordination of the metal being completed by five water oxygens. The phosphate oxygens are involved in hydrogen bonding with the co-ordinated water molecules. The structure is closely similar to that of the corresponding ribonucleotide complex. The nucleotide has the energetically preferred conformation: an anti base, a C(3') -endo sugar pucker, and a gauche-gauche conformation about the C(4')-C( 5') bond. The significance of sugar puckering in the monomeric complexes of general formula [ M (5'-nucleotide) (H20),] is explained in terms of the structural requirements for metal-water-phosphate bridging interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The frequencies and variable-temperature behaviour of 35Cl nuclear quadrupole resonance in three aminocyclophosphazene derivatives are reported. The observed frequencies and multiplicity are correlated with the disposition of the substituents and the crystal structure. The temperature-dependence data are discussed in the framework of Bayer-Kushida-Brown equations and low-lying torsional (librational) frequencies and their average temperature coefficients are estimated. Brown's parabolic equation provides a good fit to the experimental data. Variable-temperature proton FT-NMR measurements (at 270 MHz) have also been carried out. The results are consistent with the NQR data and indicate the presence of two-site chemical exchange of the -NH protons and hydrogen bonding.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT: Infrared studies of synthetic alamethicin fragments and model peptides containing a-aminoisobutyric acid (Aib) have been carried out in solution. Tripeptides and larger fragments exhibit a strong tendency to form /3 turns, stabilized by 4 - 1 10-atom hydrogen bonds. Dipeptides show less well-defined structures, though C5 and C7 conformations are detectable. Conformational restrictions imposed by Aib residues result in these peptides populating a limited range of states. Integrated intensities of the hydrogen-bonded N-H stretching band can be used to quantitate the number of intramolecular hydrogen bonds. Predictions made from infrared data are in excellent agreement with nuclear magnetic resonance and X-ray diffraction studies. Assignments of the urethane and tertiary amide carbonyl groups in the free state have been made in model peptides. Shifts to lower frequency on hydrogen bonding are observed for the carbonyl groups. The 1-6 segment of alamethicin is shown to adopt a 310 helical structure stabilized by four intramolecular hydrogen bonds. The fragments Boc-Leu-Aib-Pro-Val-Aib-OMe (1 2-1 6) and Boc-Gly-Leu-Aib-Pro-Val-Aib-OMe (1 1-1 6) possess structures involving 4 - 1 and 5 - 1 hydrogen bonds. Supporting evidence for these structures is obtained from proton nuclear magnetic resonance studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The retinylidene Schiff base derivative of seven lysine containing peptides have been prepared in order to investigate solvent and neighboring group effects, on the absorption maximum of the protonated Schiff base chromophore. The peptides studied are Boc-Aib-Lys-Aib-OMe (1), Boc-Ala-Aib-Lys-OMe (2), Boc-Ala-Aib-Lys-Aib-OMe (3), Boc-Aib-Asp-Aib-Aib-Lys-Aib-OMe (4), Boc-Aib-Asp-Aib-Ala-Aib-Lys-Aib-OMe (5), Boc-Lys-Val-Gly-Phe-OMe (6) and Boc-Ser-Ala-Lys-Val-Gly-Phe-OMe (7). In all cases protonation shifts the absorption maxima to the red by 3150–8450 cm-1. For peptides 1–3 the protonation shifts are significantly larger in nonhydrogen bonding solvents like CHCl3 or CH2Cl2 as compared to hydrogen bonding solvents like CH3OH. The presence of a proximal Asp residue in 4 and 5 results in pronounced blue shift of the absorption maximum of the protonated Schiff base in CHCl3, relative to peptides lacking this residue. Peptides 6 and 7 represent small segments of the bacteriorhodopsin sequence in the vicinity of Lys-216. The presence of Ser reduces the magnitude of the protonation shift.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The conformational analysis of d-pantothenic acid using classical semiempirical methods has been carried out. The pantothenic acid molecule can exist in the neutral form (I) or in the ionised form (II) with a deprotonated negatively charged carboxyl group. The neutral molecule as well as the anion is highly flexible and has an ensemble of several allowed conformations rather than one or two unique conformations. The distribution of allowed conformations indicate that the β-alanine as well as the pantoic acid part of the molecule prefers partially folded conformations. The conformation of the former is greatly affected by the ionisation state of the carboxyl group whereas that of the latter is not. Possibility of intramolecular hydrogen bonding in different allowed conformations has also been explored. A bifurcated hydrogen bond involving a carboxyl (or carboxylate) oxygen atom and a hydroxyl oxygen atom, as acceptors, and the amide nitrogen atom as the donor occurs frequently in both I and II. Amongst the two crystal structures containing pantothenic acid reported so far, the conformation of the molecule in l-lysine d-pantothenate lies in the allowed region and is stabilised by a bifurcated intramolecular hydrogen bond, whereas that in the calcium bromide salt falls in a disallowed region, presumably due to the requirement of tridentate metal coordination.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mr=328.32, triclinic, P1, a=5.801 (1), b=7.977(1), c=9.110(2)A, ~t=102.33 (1), fl= 97.92 (1), y= 109.82 (1) °, v= 377.2 (1) A 3 at 293 K, Z=I, D x=1.45, D m=1.45 g cm -3, 2(MoKs)= 0.7107 A, ~ = 0.74 cm -1, F(000) = 174.0. R = 0.046 for 990 unique observed [F o > 4O(Fo)] reflections. The crystal structure is stabilized by extensive hydrogen bonding involving all N and O atoms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single crystal electron spin resonance studies of Cu2+ doped ferroelectric ammonium sulphate ((NH4)2SO4, Tc = 223 K) are reported at 300 and 77 K. The Cu2+ ion is found to enter the lattice interstitially with a trigonal bipyramidal coordination. Proton superhyperfine interaction is found for magnetic field directions close to the a-axis. Changes are observed in the 77 K recordings indicating a distortion of the trigonal bipyramid consistent with crystal structure data. An increase of the proton superhyperfine constant in the ferroelectric phase is indicative of stronger hydrogen bonding. The Cu2+ ion doped as an impurity in a trigonal bipyramid environment in a diamagnetic host lattice is reported for the first time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polypeptides with alternating L- and D-amino acid residues can take up stereochemically satisfactory coaxial double-helical structures, both antiparallel and parallel, which are stabilized by systematic interchain NH O hydrogen bonds. Semiempirical energy calculations over allowed regions of conformational space have yielded the characteristics of these double-helices. There are four possible types of antiparallel double-helices - A3, A4, A5 and A6, with n, the number of LD peptide units per turn, around 2.8, 3.6, 4.5 and 5.5 respectively, while for the parallel double-helices there are two types, P3 and P4, having similar helical parameters as in A3 and A4. The hydrogen-bonding scheme restricts the pitch in all the models to the narrow range of 10.0 to 11.5 Å. All these helices have large central cores whose radii increase proportionately with n. In this respect, A3 and A4 are suitable models for the structure of gramicidin A. In terms of their relative energies, antiparallel double-helices are marginally more stable than those with parallel strands. Our results indicate that the energy differences amongst the members in the antiparallel family are not significant and thus provide an explanation for the polymorphism reported for poly(γ-benzyl-LD-glutamate).