130 resultados para Heptamethylenediammonium Bis(saccharinate) Monohydrate
Resumo:
Single crystals of calcium hydrazine carboxylate, monohydrate have been studied by ESR of Mn2+ doped in the calcium sites. X-band ESR indicated a large crystal field splitting necessitating experiments at Q band. The analysis shows two magnetically inequivalent (but chemically equivalent) sites with g(xx) = 2.0042+/-0.0038, g(yy) = 2.0076 +/-00029, g(zz) =2.0314+/-0.001, A(zz) = 0.0099+/-0.0002 cm(-1), A(xx) = 0.0099+/-0.0002 cm(-1), A(yy) = 0.0082+/-0.0002cm(-1), D = 3/2D(zz) = 0.0558+/-0.0006cm(-1), and E = 1/2(D-xx-D-yy) = 0.0127+/-0.0002 cm(-1).One of the principal components of the crystal field, (D-zz), is found to be along the Ca<->Ca direction in the structure and a second one, (D-xx), along the perpendicular to the plane of the triangle formed by three neighbouring calciums. The A tensor is found to have an orientation different from that of the g and D tensors reflecting the low symmetry of the Ca2+ sites.
Resumo:
Reactions of the bis(3,5-dimethylpyrazol-1-yl)cyclotriphosphazenes gem-N3P3Ph4(C3HN2Me2)2 (L1) and N3P3(MeNCH2CH2O)2(C3HN2Me2)2 (L2) with [M(CO)6] (M = Mo or W) afford complexes of the type [M(CO)3L] (L = L1 or L2), which have been characterised by IR and NMR spectroscopic data. The structures of [Mo(CO)3L1], [W(CO)3L2] and the ligand L2 have been determined by single-crystal X-ray diffraction. The phosphazenes act as novel tridentate NNN-donor ligands with two pyrazolyl nitrogen atoms and one phosphazene ring nitrogen atom bonded to the metal atom
Resumo:
Barium metazirconate (BaZrO3) fine powder has been produced by thermally decomposing a molecular precursor, barium bis(citrato)oxozirconate(IV) tetrahydrate at about 700-degrees-C. The precursor, Ba[ZrO(C6H6O7)2] . 4H2O (BZO) has been synthesized and characterized by employing a combination of spectroscopic and thermoanalytical techniques. The precursor undergoes thermal decomposition in three major stages: (i) dehydration to give an anhydrous barium zirconyl citrate, (ii) decomposition of the anhydrous citrate in a multistep process to form an ionic oxycarbonate intermediate, Ba2Zr2O5CO3, and (iii) decomposition of the oxycarbonate to produce BaZrO3 fine powder. The particle size of the resultant BaZrO3 is about 0.2 mum, and the surface area is found to be 4.0 m2 g-1.
Resumo:
The Cu atoms in aquabis(tert-butyl acetoacetato)copper(II),[Cu(C8H13O3)(2)(H2O)], and bis(dipivaloylmethanido)copper(II), [Cu(C11H19O2)(2)], adopt square-pyramidal and planar conformations, respectively, with average Cu--O distances of 1.933 Angstrom in the former (not including the water ligand) and 1.892 Angstrom in the latter. It is interesting to note that the lability of the tert-butyl and methyl groups in both structures, which renders even the location of the terminal C atoms difficult, is reduced at T = 130 K, enabling location of all the protons in the difference Fourier map.
Resumo:
The linear quadridentate ligand N,N'-bis(benzimidazoI-2-ylethyl)ethane-l,2-diamine (L') and its 1 - methylbenzimidazole analogue (L2) and homologues form 1 : 1 complexes with Cu(CIO,),; L' also forms complexes of the types CuL'X, where X = NO,, PF,, Br or CI and CuL'(X)Y where X = CI or Br and Y = CIO, or Br. Deep blue CuL1Br,*2H20 crystallizes in the monoclinic space group C2/c with Z = 4, a = 9.91 9(2), b = 16.626(3), c = 14.1 02(3) le\ and p = 94.39(2)". The structure was solved by Patterson and Fourier difference methods and refined by the least-squares technique to R = 0.064 for 2195 independent reflections with / > 1.50(/). The molecule lies on a two-fold axis symmetrically around Cu". The co-ordination around Cu" is found to be square planar with two amino nitrogens and two benzimidazole nitrogens forming the equatorial plane [CU-N 1.983(3) and 2.037(4) A]. The bromides are at longer distances [3.349(1) A] in axial sites. Ligand field and EPR spectra indicate that one bromide or chloride ion is axially co-ordinated to Cu" in [CuL1l2+. This ion exhibits quasi-reversible redox behaviour. Electrochemical studies of the dihalides in methanol have established the presence of [CuL'X,], [CuL'(X)]+ and [CuL'I2+ in equilibrium. In complexes with 565 [CuL4I2+ [L4 = N,Nbis( benzimidazol-2-ylmethyl)ethane-l,2-diamine] and 555 [CuL3] [L3 = N,N'-bis(1 -methylbenzimidazol- 2-ylmethyl)propane-l,3-diamine] chelate rings, Cull does not seem to lie in the N, square plane, as revealed by their low A values and irreversible electrochemical behaviour. The Cu"-Cu' redox potentials in methanol are in the order [CuL1I2+ < [CuL3I2+ < [CuL4I2+; this illustrates that sixmembered chelate rings are suitable to stabilize Cu", when CU-N 0 interactions are favourable.
Resumo:
The 1:1 and 1:2 cooper(II) complexes with the tridentate compound bis(benzimidazol-2-ylmethyl)amine (L(1)) and its benzimidazole (L(2)) and amine (L(3)) N-methyl-substituted derivatives have been prepared and their spectroscopic properties studied. While the 1:1 complexes are of the type CuLX(2) nH(2)O (X = C/O-4(-), NO3-, Cl- or Br-), the 1:2 complexes are of the type CuL(2) (ClO4)(2) nH(2)O (L = L(1) or L(3), n = 0-4). In all these complexes L acts as a tridentate ligand with the amine nitrogen and both the benzimidazole nitrogens co-ordinating to Cu-II. The complex [CuL(2)(1)][ClO4](2) 2H(2)O crystallises in the monoclinic space group P2(1)/c with a = 9.828(2), b = 9.546(2) and c = 19.906(2) Angstrom and beta = 95.71(1)degrees, for Z = 2. The R value is 0.0635 for 2180 significant reflections. The copper(II) ion has an elongated octahedral geometry with four equatorial benzimidazole and two long-distance axial amine N donors. The Cu-N-bzim and Cu-N-amine distances are 2.011(4) and 2.597(6) Angstrom respectively. Factors favouring facial co-ordination to tridentate ligands are discussed. The 1:1 complexes involve meridonal co-ordination of the ligands, with square-based geometry as revealed by ligand-field and EPR spectral properties. The NMe substitution as in CuL(3)(ClO4)(2) confers low V ($) over tilde$$(max) and high E(1/2) for the cu(II)-Cu-I couple. Most of the 1:1 complexes are less reversible but exhibit E(1/2) values more positive than those of the corresponding 1:2 complexes.
Resumo:
Fluorescent zinc complexes have recently attracted a lot of interest owing to their vast applications in cellular imaging. We report the synthesis as well as physical, chemical and biological studies of a novel zinc glyoxalbis(4-methyl-4-phenyl-3-thiosemicarbazone), Zn (GTSC)](3), complex. As compared with the well-studied zinc biacetylbis(4-methyl-3-thiosemicarbazone), Zn(ATSM), complex, which was used as a reference, Zn(GTSC)](3) had 2.5-fold higher fluorescence. When cellular fluorescence was measured using flow cytometry, we observed that Zn(GTSC)](3) had 3.4-fold to 12-fold higher fluorescence than Zn(ATSM) in various cell lines (n = 9) of different tissue origin. Confocal fluorescence microscopy results showed that Zn(GTSC)](3) appeared to have a nuclear localization within 30 mm of addition to MCF7 cells. Moreover, Zn(GTSC)](3) showed minimal cytotoxicity compared with Zn(ATSM), suggesting that Zn(GTSC)](3) may be less deleterious to cells when used as an imaging agent. Our data suggest that the novel Zn(GTSC)](3) complex can potentially serve as a biocompatible fluorescent imaging agent for live cells.
Resumo:
A series of new photo-crosslinkable main-chain liquid-crystalline polymers containing bis(benzylidene)cycloalkanone units have been studied. These units in the polymers function as mesogens as well as photoactive centres. Polyesters with three different bis(4-hydroxybenzylidene)cycloalkanones corresponding to three cycloalkanones, namely cyclopentanone, cyclohexanone and cycloheptanone, have been prepared. Three dicarboxylic acids with ether linkages, which were derived from oligoethylene oxides, namely triethylene glycol, tetraethylene glycol and pentaethylene glycol, have been used as spacers in these polymers. Polymerization was carried out by both solution and interfacial polycondensation; the latter method gave high-molecular-weight polymers. Structural characterizations were done by ultra-violet, infra-red and H-1 nuclear magnetic resonance spectroscopy. Liquid-crystalline properties were studied by differential scanning calorimetry and polarized-light optical microscopy. These polymers show a nematic mesophase. Liquid-crystalline transition temperatures were correlated with polymer structure. The decrease in transition temperature with increase in cycloalkanone ring size was explained in terms of the change in geometrical anisotropy of bis(benzylidene)cycloalkanone units. MNDO (modified neglect of differential overlap) calculations were performed on the model compounds, bis(4-acetyloxybenzylidene)cycloalkanone to elucidate the geometrical variation of the mesogenic units with cycloalkanone ring size. Studies of photolysis reveal the two kinds of photoreactions that proceed in these polymer systems, namely photoisomerization and photo-crosslinking. The former reaction disrupts the parallel stacking of the chromophores and is reflected as an increase in the ultra-violet spectral intensity. The favourability of these two reactions depends on the mobility of the polymer chains. When the photolysis was done below T-g, photo-crosslinking dominates over photoisomerization. Above T-g, photoisomerization is followed by photo-crosslinking. The photosensitivity of the polymers decreases with increase in size of the cycloalkanone ring.
Resumo:
Reaction of [Ru2O(O(2)CR)(2)(MeCN)(4)(PPh(3))(2)](ClO4)(2) (1) with 1,2-diaminoethane (en) in MeOH-H2O yielded a mixture of products from which a diamagnetic ruthenium(II) complex [Ru(MeCN)(en)(2)(PPh(3))](ClO4)(2) (2) and a paramagnetic ruthenium(III) species [Ru(O(2)CR)(en)(2)(PPh(3))](BPh(4))(2) (3) (R = Ph, a; C6H4-p-Me, b; C6H4-p-OMe, c) were isolated and characterized. The crystal structure of complex 2, obtained by X-ray diffraction analysis, shows a cis arrangement of the unidentate ligands in this octahedral complex. Complex 3 displays an axial EPR spectrum. Complex 2 undergoes two successive irreversible metal-centred one-electron oxidation processes at 1.13 and 1.33 V vs SCE in MeCN-0.1 M [NBu(4)(n)]ClO4 at 50 mV s(-1). The mechanistic aspects of the core cleavage reactions in 1 are discussed.
Resumo:
The ligand bis(diphenylphosphino)aniline (dppan) has been shown to be a versatile ligand sporting different coordination modes and geometries as dictated by copper(I) and the counter ion. The molecular structures of its Cu(I) complexes were characterized by X-ray crystallography. The ligand was found in a chelating mode and monomeric complexes were formed when the ligand to copper ratio was 2: 1 and the anion was non-coordinating. However, with thiocyanate as the counter anion, the ligand was found to adopt two different modes, with one ligand chelating and the other acting as a monodentate ligand. With CuX (X = Cl, Br), dppan formed a tetrameric complex when the ligand and metal were reacted in the ratio of 1:1. But reactions containing ligand and metal in the ratios of 1: 2 or 2: 1, resulted in the formation of a mixture of species in solution. Crystallization however, led to the isolation of the tetrameric complex. Variable temperature P-31{H-1} NMR spectra of the isolated tetramers did not show the presence of chelated structures in solution. Tetra-alkylammonium salts were added to solutions of various complexes of dppan and studied by P-31{H-1} NMR to probe the effect of anions on the stability of complexes in solution. The Cu-dppan complexes were robust and did not interconvert with other structures in solution unlike the bis(diphenylphosphino) isopropylamine complexes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The asymmetric unit of the title compound, (C14H13N2S)(2)CuBr4]center dot 2H(2)O, contains two cations, one anion and two solvent water molecules that are connected via O-H center dot center dot center dot Br, N-H center dot center dot center dot Br and N-H center dot center dot center dot O hydrogen bonds into a two-dimensional polymeric structure. The cations are arranged in a head-to-tail fashion and form stacks along 100]. The central Cu-II atom of the anion is in a distorted tetrahedral environment.
Resumo:
In the title compound, Zn(C5H7O2)(2)(C5H5N)], the metal atom has square-pyramidal coordination geometry with the basal plane defined by the four O atoms of the chelating acetylacetonate ligands and with the axial position occupied by the pyridine N atom. The crystal packing is characterized by a C-H...O hydrogen-bonded ribbon structure approximately parallel to 10
Resumo:
A new class of epoxy resins having N-N bonds in their structure has been synthesized by reacting N,N'-aliphatic dicarboxyl bis(hydrazones) (the aldehyde/ketone derivatives of malonic, adipic, and sebacic dihydrazides) with epichlorohydrin. The reactivity of the[GRAPHICS] protons as a function of the substituent group and the number of methylene spacer groups present in the hydrazone has been examined. The resins obtained have been characterized by elemental and epoxy equivalent analyses and IR and NMR spectra. All these resins are found to have adequate viscosity and cure easily with amine curatives at elevated temperatures. Relevant properties for their use as binders in propellant formulations, such as thermal stability, heat of combustion, density, temperature dependence of viscosity, and mechanical strength of the composites, have been evaluated. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The synthesis of some functionalised isomeric, symmetrical tetrathiafulvalene derivatives containing 4,5-(ethylenedithio)-1,3-dithiole and 4,5-(propylenedithio)-1,3-dithiole units is described. These contain hydroxy, chloro and cyano functionalities (4, 6, 9 and 12). Interestingly, attempted coupling of 4,5-bis(propargylthio)-1,3-dithiole-2-thione 13, to obtain the corresponding TTF, 14 afforded the novel thione, 5-methylthieno[2,3-d]-1,3-dithiole-2-thione 15. Self coupling of thione 15 in the presence of trimethyl phosphite afforded new functionalised dithiophenetetrathiafulvalene 16. The X-ray crysal structures of 4,5-bis(propargyldithio)-1,3-dithiole-2-thione 13 and 5-methylthieno[2,3-d]-1,3-dithiole-2-thione 15 are described. (C) 1997 Elsevier Science Ltd.
Resumo:
Asymmetrically dibridged dicopper(II) complexes, [Cu-2(OH)(O2CC6H4-p-Me)(tmen)(2)(H2O)](ClO4)(2) (1) and [Cu-2(OH)(O2CC6H4-p-OMe)(tmen)(2)(H2O)](ClO4)(2) (2) (tmen = N,N,N',N'-tetramethylethane-1,2-diamine), were prepared and structurally characterized. Complex 1 crystallizes in the monoclinic space group P2(1)/a with a = 17.718(2), b = 9.869(1), c = 19.677(2) Angstrom, beta = 115.16(1)degrees, V = 3114.3(6) Angstrom(3) and Z = 4. The structure was refined to R(wR(2)) = 0.067(0.178). Complex 2 crystallizes in the monoclinic space group P2(1)/a with a = 17.695(3), b = 9.574(4), c = 20.104(2) Angstrom, beta = 114.18(1)degrees, V = 3107(1) Angstrom(3) and Z = 4. The final residuals are R(wR(2)) = 0.067(0.182). The complexes have a [Cu-2(mu-OH)(mu-OH)(mu-O2CAr)](2+) core with tmen Ligands occupying the terminal sites of the core. In addition, one copper is axially bound to a water molecule. The Cu ... Cu distances and the Cu-OH Cu angles in the core are 3.394(1) Angstrom, 124.4(2)degrees for 1 and 3.374(1) Angstrom, 123.3(3)degrees for 2. The complexes show axial X-band EPR spectral features in methanol glass at 77 K giving g(perpendicular to) = 2.02, g(parallel to) = 2.3 (A(parallel to) = 165 x 10(-4) cm(-1)) and a visible band near similar to 630 nm in methanol. The complexes are weakly antiferromagnetic. A theoretical fit of the magnetic susceptibility data in the temperature range 40-295 K gives -J = 10 cm(-1), g = 2.05 for 1 and -J = 10 cm(-1), g = 2.0 for 2. Plots of -2J versus the Cu-OH-Cu angle (phi) in this class of asymmetrically dibridged dicopper(II) complexes having d(x2-y2)-d(x2-y2) magnetic orbitals show a linear magneto-structural correlation: -2J(cm(-1)) = 11.48 phi(deg) - 1373.