236 resultados para H-closed space
Resumo:
High mass X-ray binary (H M X B) pulsars are of two types, persistent and transient. 4U 1538-52 is a persistent HMXB whose orbit was previously measured to be circular but the RXTE observations revealed an eccentric orbit. We observed this system with RXTE-PCA in August 2003 and our timing analysis supports the eccentric orbit of the system. However, we do not find any evidence for orbital evolution. Rotational and tidal interactions between the stars of a closed binary system result in apsidal motion which can be measured in systems with eccentric orbit. 4U0115+63 is a Be-transient HMXB whose eccentric orbit was well-determined during its 1978 outburst. We report preliminary results from analysis of data obtained during the 1999 outburst of this source with the RXTE-PCA.
Resumo:
A slip line field is proposed for symmetrical single‐cavity closed‐die forging by rough dies. A compatible velocity field is shown to exist. Experiments were conducted using lead workpiece and rough dies. Experimentally observed flow and load were used to validate the proposed slip line field. The slip line field was used to simulate the process in the computer with the objective of studying the influence of flash geometry on cavity filling.
Resumo:
Simple ARC designs for germanium (Ge) optics useful in spaceborne electro-optical systems have been generated. It is seen that the designs which are non-quarterwave in nature are efficient in terms of spectral coverage and residual reflection loss. They have been realised experimentally and the resulting ARCs are found to have very good spectral and durability properties.
Resumo:
A method is presented to model server unreliability in closed queuing networks. Breakdowns and repairs of servers, assumed to be time-dependent, are modeled using virtual customers and virtual servers in the system. The problem is thus converted into a closed queue with all reliable servers and preemptive resume priority centers. Several recent preemptive priority approximations and an approximation of the one proposed are used in the analysis. This method has approximately the same computational requirements as that of mean-value analysis for a network of identical dimensions and is therefore very efficient
Resumo:
The application of different cooling rates as a strategy to enhance the structure of aluminium foams is studied. The potential to influence the level of morphological defects and cell size non-uniformities is investigated. AlSi6Cu4 alloy was foamed through the powder compact route and then solidified, applying three different cooling rates. Foam development was monitored in situ by means of X-ray radioscopy while foaming inside a closed mould. The macro-structure of the foams was analysed in terms of cell size distribution as determined by X-ray tomography. Compression tests were conducted to assess the mechanical performance of the foams and measured properties were correlated with structural features of the foams. Moreover, possible changes in the ductile brittle nature of deformation with cooling rate were analysed by studying the initial stages of deformation. We observed improvements in the cell size distributions, reduction in microporosity and grain size at higher cooling rates, which in turn led to a notable enhancement in compressive strength. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A one-dimensional arbitrary system with quantum Hamiltonian H(q, p) is shown to acquire the 'geometric' phase gamma (C)=(1/2) contour integral c(Podqo-qodpo) under adiabatic transport q to q+q+qo(t) and p to p+po(t) along a closed circuit C in the parameter space (qo(t), po(t)). The non-vanishing nature of this phase, despite only one degree of freedom (q), is due ultimately to the underlying non-Abelian Weyl group. A physical realisation in which this Berry phase results in a line spread is briefly discussed.
Resumo:
A new fiber bundle approach to the gauge theory of a group G that involves space‐time symmetries as well as internal symmetries is presented. The ungauged group G is regarded as the group of left translations on a fiber bundle G(G/H,H), where H is a closed subgroup and G/H is space‐time. The Yang–Mills potential is the pullback of the Maurer–Cartan form and the Yang–Mills fields are zero. More general diffeomorphisms on the bundle space are then identified as the appropriate gauged generalizations of the left translations, and the Yang–Mills potential is identified as the pullback of the dual of a certain kind of vielbein on the group manifold. The Yang–Mills fields include a torsion on space‐time.
Resumo:
A general analysis of the Hamilton-Jacobi form of dynamics motivated by phase space methods and classical transformation theory is presented. The connection between constants of motion, symmetries, and the Hamilton-Jacobi equation is described.
Resumo:
The method of least squares could be used to refine an imperfectly related trial structure by adoption of one of the following two procedures: (i) using all the observed at one time or (ii) successive refinement in stages with data of increasing resolution. While the former procedure is successful in the case of trial structures which are sufficiently accurate, only the latter has been found to be successful when the mean positional error (i.e.<|[Delta]r|>) for the atoms in the trial structure is large. This paper makes a theoretical study of the variation of the R index, mean phase-angle error, etc. as a function of <|[Delta]r|> for data corresponding to different esolutions in order to find the best refinement procedure [i.e. (i) or (ii)] which could be successfully employed for refining trial structures in which <|[Delta]r|> has large, medium and low values. It is found that a trial structure for which the mean positional error is large could be refined only by the method of successive refinement with data of increasing resolution.
Resumo:
It is shown that besides the continuous spectrum which damps away as inverse power of time, the coupled Alfvén wave equation, which gives coupling between a shear Alfvén wave and a surface wave, can also admit a well behaved harmonic solution in the closed form for a set of initial conditions. This solution, though valid for finite time intervals, points out that the Alfvén surface waves can have a band of frequency (instead of a monochromatic frequency for a nonsheared magnetic field) within which the local field line resonance frequency can lie, and thus can excite magnetic pulsations with latitude-dependent frequency. By considering magnetic fields not only varying in magnitude but also in direction, it is shown that the time interval for the validity of the harmonic solution depend upon the angle between the magnetic field directions on either side of the magnetopause. For small values of the angle the time interval can become appreciably large.
Resumo:
A k-dimensional box is the Cartesian product R-1 X R-2 X ... X R-k where each R-i is a closed interval on the real line. The boxicity of a graph G, denoted as box(G), is the minimum integer k such that G can be represented as the intersection graph of a collection of k-dimensional boxes. A unit cube in k-dimensional space or a k-cube is defined as the Cartesian product R-1 X R-2 X ... X R-k where each R-i is a closed interval oil the real line of the form a(i), a(i) + 1]. The cubicity of G, denoted as cub(G), is the minimum integer k such that G can be represented as the intersection graph of a collection of k-cubes. The threshold dimension of a graph G(V, E) is the smallest integer k such that E can be covered by k threshold spanning subgraphs of G. In this paper we will show that there exists no polynomial-time algorithm for approximating the threshold dimension of a graph on n vertices with a factor of O(n(0.5-epsilon)) for any epsilon > 0 unless NP = ZPP. From this result we will show that there exists no polynomial-time algorithm for approximating the boxicity and the cubicity of a graph on n vertices with factor O(n(0.5-epsilon)) for any epsilon > 0 unless NP = ZPP. In fact all these hardness results hold even for a highly structured class of graphs, namely the split graphs. We will also show that it is NP-complete to determine whether a given split graph has boxicity at most 3. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The authors study the trajectories of charged particles in Ernst's space-time representing a static black hole immersed in a magnetic field. They find bound orbits always exist for realistic magnetic field strengths. A similar investigation is carried out for the case of Melvin's magnetic universe and for a corresponding test field superposed on a flat space-time.
Resumo:
This paper deals with the kinematics of pantograph masts. Pantograph masts have widespread use in space application as deployable structures. They are over constrained mechanisms with degree-of-freedom, evaluated by the Grübler–Kutzback formula, as less than one. In this paper, a numerical algorithm is used to evaluate the degree-of-freedom of pantograph masts by obtaining the null space of a constraint Jacobian matrix. In the process redundant joints in the masts are obtained. A method based on symbolic computation, to obtain the closed-form kinematics equations of triangular and box shaped pantograph masts, is presented. In the process, the various configurations such masts can attain during deployment, are obtained. The closed-form solution also helps in identifying the redundant joints in the masts. The symbolic computations involving the Jacobian matrix also leads to a method to evaluate the global degree-of-freedom for these masts.
Resumo:
In voiced speech analysis epochal information is useful in accurate estimation of pitch periods and the frequency response of the vocal tract system. Ideally, linear prediction (LP) residual should give impulses at epochs. However, there are often ambiguities in the direct use of LP residual since samples of either polarity occur around epochs. Further, since the digital inverse filter does not compensate the phase response of the vocal tract system exactly, there is an uncertainty in the estimated epoch position. In this paper we present an interpretation of LP residual by considering the effect of the following factors: 1) the shape of glottal pulses, 2) inaccurate estimation of formants and bandwidths, 3) phase angles of formants at the instants of excitation, and 4) zeros in the vocal tract system. A method for the unambiguous identification of epochs from LP residual is then presented. The accuracy of the method is tested by comparing the results with the epochs obtained from the estimated glottal pulse shapes for several vowel segments. The method is used to identify the closed glottis interval for the estimation of the true frequency response of the vocal tract system.
Resumo:
An algorithm to generate a minimal spanning tree is presented when the nodes with their coordinates in some m-dimensional Euclidean space and the corresponding metric are given. This algorithm is tested on manually generated data sets. The worst case time complexity of this algorithm is O(n log2n) for a collection of n data samples.