134 resultados para Grain Refinement


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The long-wavelength hydrodynamics of the Renn-Lubensky twist grain boundary phase with grain boundary angle 2pialpha, alpha irrational, is studied. We find three propagating sound modes, with two of the three sound speeds vanishing for propagation orthogonal to the grains, and one vanishing for propagation parallel to the grains as well. In addition, we find that the viscosities eta1, eta2, eta4, and eta5 diverge like 1/Absolute value of omega as frequency omega --> 0, with the divergent parts DELTAeta(i) satisfying DELTAeta1DELTAeta4=(DELTAeta5)2, exactly. Our results should also apply to the predicted decoupled lamellar phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of Ca0.5Ti2P3O12 and Sr0.5Ti2P3O12, low-thermal-expansion materials, have been refined by the Rietveld method using high-resolution powder X-ray diffraction (XRD) data. The assignment of space group R[3 with combining macron] to NASICON-type compounds containing divalent cations is confirmed. 31P magic-angle spinning nuclear magnetic resonance (MASNMR) data are presented as supporting data. A comparison of changes in the polyhedral network resulting from the cation distribution, is made with NaTi2P3O12 and Nb2P3O12. Factors that may govern thermal expansion in this family of compounds are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a large decrease in tetragonal to cubic phase transformation temperature when grain size of bulk CuFe2O4 is reduced by mechanical ball milling. The change in phase transformation temperature was inferred from in situ high temperature conductivity and x-ray diffraction measurements. The decrease in conductivity with grain size suggests that ball milling has not induced any oxygen vacancy while the role of cation distribution in the observed decrease in phase transformation temperature is ruled out from in-field Fe-57 Mossbauer and extended x-ray absorption fine structure measurements. The reduction in the phase transformation temperature is attributed to the stability of structures with higher crystal symmetry at lower grain sizes due to negative pressure effect. (C) 2011 American Institute of Physics. doi: 10.1063/1.3493244]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tensile experiments at 673 K and grain sizes from similar to 8 to 17 mu m revealed large ductility at a low strain rate and a reduced ductility at a high strain rate, corresponding to a change from a high to a low value for the strain rate sensitivity. High strain rate deformation led to fracture by flow localization, whereas low strain rate deformation involved fracture by cavity nucleation and growth. Analysis revealed that grain boundary migration can assist significantly in reducing the stress concentrations caused by grain boundary sliding, thereby retarding cavity nucleation. Calculations demonstrate that the interlinkage of voids parallel and perpendicular to the tensile axis occurs significantly, so that it is not always possible to use the cavity shapes to distinguish between diffusion and plasticity controlled growth. Cavitation damage evolves slowly in materials with a coarser grain size because of reduced nucleation related to a reduction in the strain rate sensitivity and associated grain boundary sliding. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure Y2O3 and Y2O3---ZrO2 solid solutions have been prepared by melt atomization and by pyrolysis of nitrate solutions. Extended solubility is readily achieved in both techniques for the entire composition range investigated: melts with 0–30% ZrO2 and precursors with 0–50% ZrO2. However, solidification of under cooled droplets yields almost exclusively single phase powders with the structure of cubic yttria (D53). In contrast, the pyrolysis route leads to a sequence of metastable microstructures beginning with a nanocrystalline disordered fluorite-based (C1) solid solution. Further heating leads to the evolution of much larger (micron size) flake crystals with a {001} texture, concurrent with partial ordering of the oxygen ions to the sites occupied in the D53 structure. The driving force for ordering and the rate of grain growth decrease with increasing ZrO2 addition. Abrupt heating to high temperatures or electron irradiation can induce ordering without substantial grain growth. There is no significant reduction in porosity during the recrystallization, which with the other observations suggests that grain growth is driven by the free energy available for the ordering transformation from fluorite to the yttria structure. This route offers opportunities for single crystal thin film development at relatively low processing temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure Y2O3 and Y2O3-ZrO2 solid solutions have been prepared by melt atomization and by pyrolysis of nitrate solutions. Extended solubility is readily achieved in both techniques for the entire composition range investigated: melts with 0-30% ZrO2 and precursors with 0-50% ZrO2. However, solidification of under cooled droplets yields almost exclusively single phase powders with the structure of cubic yttria (D5(3)). In contrast, the pyrolysis route leads to a sequence of metastable microstructures beginning with a nanocrystalline disordered fluorite-based (C1) solid solution. Further heating leads to the evolution of much larger (micron size) flake crystals with a {001} texture, concurrent with partial ordering of the oxygen ions to the sites occupied in the D5(3) structure. The driving force for ordering and the rate of grain growth decrease with increasing ZrO2 addition. Abrupt heating to high temperatures or electron irradiation can induce ordering without substantial grain growth. There is no significant reduction in porosity during the recrystallization, which with the other observations suggests that grain growth is driven by the free energy available for the ordering transformation from fluorite to the yttria structure. This route offers opportunities for single crystal thin film development at relatively low processing temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grain boundary sliding during high temperature deformation can lead to stress concentrations and an enhancement of diffusion in mobile boundaries. Experiments were conducted on a fine grained 3 mol% yttria stabilized tetragonal zirconia, under conditions associated with superplastic flow involving grain boundary sliding. Tracer diffusion studies under creep conditions and without load indicate that there is no enhancement in either the lattice or grain boundary diffusivities. The experimental creep data are consistent with an interface controlled diffusion creep mechanism. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper with four widely differing grain sizes was subjected to high-strain-rate plastic deformation in a special experimental arrangement in which high shear strains of approximately 2 to 7 were generated. The adiabatic plastic deformation produced temperature rises in excess of 300 K, creating conditions favorable for dynamic recrystallization, with an attendant change in the mechanical response. Preshocking of the specimens to an amplitude of 50 GPa generated a high dislocation density; twinning was highly dependent on grain size, being profuse for the 117- and 315-mu m grain-size specimens and virtually absent for the 9.5-mu m grain-size specimens. This has a profound effect on the subsequent mechanical response of the specimens, with the smaller grain-size material undergoing considerably more hardening than the larger grain-size material. A rationale is proposed which leads to a prediction of the shock threshold stress for twinning as a function of grain size. The strain required for localization of plastic deformation was dependent on the combined grain size/shock-induced microstructure, with the large grain-size specimens localizing more readily. The experimental results obtained are rationalized in terms of dynamic recrystallization, and a constitutive equation is applied to the experimental results; it correctly predicts the earlier onset of localization for the large grain-size specimens. It is suggested that the grain-size dependence of shock response can significantly affect the performance of shaped charges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Donor-doped n-(Ba,Pb)TiO3 polycrystalline ceramics exhibit distinctly two-step positive temperature coefficient of resistance (PTCR) characteristics when formulated with suitable combinations of B2O3 and Al2O3 as grain boundary modifiers by heterogeneous addition. B2O3 or Al2O3 when added singularly resulted in either steep or broad PTCR jumps respectively across the phase transition. The two-step PTCR is attributed to the activation of the acceptor states, created through B2O3 and Al2O3, for various temperature regimes above the Curie point (T-c). The changing pattern of trap states is evident from the presence of Ti4+-O--Al3+ type hole centres in the grain boundary layer regions, identified in the electron paramagnetic resonance (EPR) spectra. That charge redistribution occurs among the inter-band gap defect states on crossing the Curie temperature is substantiated by the temperature coefficient in the EPR results. Capacitance-voltage results clearly show that there is an increase in the density of trap states with the addition of B2O3 and Al2O3. The spread in energy values of these trap states is evident from the large change in barrier height (phi similar or equal to 0.25-0.6 eV) between 500 and 650 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grain size has marked effects on charge-ordering and other properties of Nd(0.5)A(0.5)MnO(3) (A=Ca or Sr). Thus, the anti-ferromagnetic (AFM) transition in Nd0.5Ca0.5MnO3 is observed distinctly only in samples sintered at 1273 K or higher. The sample with a small grain size (sintered at 1173 K) shows evidence for greater ferromagnetic (FM) interaction at low temperatures, probably due to phase segregation. The FM transition as well as the charge-ordering transition in Nd0.5Sr0.5MnO3 becomes sharper in samples sintered at 1273 K or higher. The sample sintered at 1173 K does not show the AFM-CO transition around 150 K and is FM down to low temperatures; the apparent T-c-T-co gap decreases with the increase in the grain size. The samples sintered at lower temperatures (<1673 K) show evidence for greater segregation of the AFM and FM domains. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Partially grain-oriented (48%) ceramics of strontium bismuth tantalate (SrBi2Ta2O9) have been fabricated via conventional sintering. The grain-orientation factor of the ceramics was determined, as a function of both the sintering temperature and duration of sintering using X-ray powder diffraction (XRD) techniques. Variations in microstructural features (from acircular to plate like morphology) as a function of sintering temperature of the pellets were monitored by Scanning Electron Microscopy (SEM). The dielectric constant and loss measurements as functions of both frequency and temperature have been carried out along the directions parallel and perpendicular to the pressing axis. The anisotropy (epsilon(rn)/epsilon(rp)) associated was found to be 2.21. The effective dielectric constant of the samples with varying porosity was predicted using different dielectric mixture formulae. The grain boundary and grain interior contributions to the dielectric properties were rationalized using the impedance spectroscopy. The pyroelectric coefficient for strontium bismuth tantalate ceramic was determined along the parallel and perpendicular directions to the pressing axis and found to be -23 muC/m(2)K and -71 muC/m(2)K, respectively at 300 K. The ferroelectric properties of these partially grain-oriented ceramics are superior in the direction perpendicular to the pressing axis to that in the parallel direction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La0.67Ba0.33MnO3 (LBMO) thin film is deposited on a 36.7degrees SrTiO3 bicrystal substrate using laser ablation technique. A microbridge is created across bicrystal grain boundary and its characteristics are compared with a microbridge on the LBMO film having no grain boundary. Presence of grain boundary exhibits substantial magnetoresistance ratio (MRR) in the low field and low temperature region. Bicrystal grain boundary contribution in MRR disappears at temperature T > 175 K. At low temperature, I-V characteristic of the microbridge across bicrystal grain boundary is nonlinear. Analysis of temperature dependence of dynamic conductance-voltage characteristics of the bicrystal grain boundary indicates that at low temperatures (T < 175 K) carrier transport across the grain boundary in LBMO film is dominated by inelastic tunneling via pairs of manganese atoms and tunneling through disordered oxides. At higher temperatures (T > 175 K), magnetic scattering process is dominating. Decrease of bicrystal grain boundary contribution in magnetoresistance with the increase in temperature is due to enhanced spin-flip scattering process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, a single-phase, one-domain macroscopic model is developed for studying binary alloy solidification with moving equiaxed solid phase, along with the associated transport phenomena. In this model, issues such as thermosolutal convection, motion of solid phase relative to liquid and viscosity variations of the solid-liquid mixture with solid fraction in the mobile zone are taken into account. Using the model, the associated transport phenomena during solidification of Al-Cu alloys in a rectangular cavity are predicted. The results for temperature variation, segregation patterns, and eutectic fraction distribution are compared with data from in-house experiments. The model predictions compare well with the experimental results. To highlight the influence of solid phase movement on convection and final macrosegregation, the results of the current model are also compared with those obtained from the conventional solidification model with stationary solid phase. By including the independent movement of the solid phase into the fluid transport model, better predictions of macrosegregation, microstructure, and even shrinkage locations were obtained. Mechanical property prediction models based on microstructure will benefit from the improved accuracy of this model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental studies were performed to investigate the role and influence of grain movement on macrosegregation and microstructure evolution during equiaxed solidification. Casting experiments were performed with a grain-refined Al-Cu alloy in a rectangular sand mold. For the aluminum alloy studied, the equiaxed grains are lighter than the bulk melt and thus float up. Experiments were designed to investigate floatation phenomena of equiaxed grains in the presence of thermosolutal convection. Cooling curves were recorded at key locations in both the casting and the chill. Quantitative image analysis and spatial chemical analysis were performed on the solidified casting to observe the chemical and microstructural inhomogeneity created by the melt convection and solid floatation. Several notable features that can be attributed to grain movement were observed in temperature histories, macrosegregation patterns, and microstructures. In our experiments, the floatation of grains influences the thermal conditions and the overall flow direction in the casting cavity. In some cases, the induced flow resulting from the grain movement caused a flow reversal. This in turn influences the solidification direction, microstructure evolution, and the overall macrosegregation behavior.